p‐essential normality of quasi‐homogeneous Drury–Arveson submodules

The first author and Wang [Math. Ann. 340 (2008) 907‐934] proved that each homogeneous principal submodule of the Drury‐Arveson module H 2 is essentially normal, and hence in dimensions n =2 ,3 each homogeneous submodule of H 2 is essentially normal. For the Bergman modules L 2(Bn) on the unit ball, Douglas and Wang [J. Funct. Anal. 261 (2011) 3155‐3180] recently proved that every principal submodule is essentially normal. In this paper, we develop some new techniques to prove the essential normality of Drury‐ Arveson’s quasi-homogeneous principal submodules, by a combination with the approach of Douglas and Wang. As a consequence, we prove that each quasi-homogeneous submodule of H 2 n is essentially normal for dimensions n =2 ,3, and determine the related K-homology.

[1]  Ronald G. Douglas Essentially Reductive Hilbert Modules , 2004 .

[2]  J. Milnor Singular points of complex hypersurfaces , 1968 .

[3]  Orr Shalit,et al.  Essential normality and the decomposability of algebraic varieties , 2012, 1207.2808.

[4]  William Arveson,et al.  Subalgebras ofC*-algebras III: Multivariable operator theory , 1997 .

[5]  Ronald G. Douglas,et al.  Some Remarks on Essentially Normal Submodules , 2012, 1204.0620.

[6]  William Arveson,et al.  p-Summable Commutators in Dimension d , 2003 .

[7]  K. Guo Defect operators for submodules of H[2][d] , 2004 .

[8]  Ronald G. Douglas,et al.  ESSENTIALLY REDUCTIVE WEIGHTED SHIFT HILBERT MODULES , 2008 .

[9]  Orr Shalit Stable polynomial division and essential normality of graded Hilbert modules , 2011, J. Lond. Math. Soc..

[10]  Quanlei Fang,et al.  Essential normality of polynomial-generated submodules: Hardy space and beyond , 2013 .

[11]  Joerg Eschmeier,et al.  Essential Normality of Homogeneous Submodules , 2009, 0912.4182.

[12]  Raúl E. Curto,et al.  Fredholm and invertible -tuples of operators. The deformation problem , 1981 .

[13]  R. G. Douglas,et al.  Extensions of C*-algebras and K-homology , 1977 .

[14]  Ronald G. Douglas Essentially Reductive Hilbert Modules II , 2006 .

[15]  H. Dichi,et al.  Hilbert functions, Hilbert-Samuel quasi-polynomials with respect to ƒ-good filtrations, multiplicities , 1999 .

[16]  Egbert Brieskorn,et al.  Beispiele zur Differentialtopologie von Singularitäten , 1966 .

[17]  Ronald G. Douglas,et al.  A harmonic analysis approach to essential normality of principal submodules , 2011 .

[18]  William Arveson,et al.  Quotients of standard Hilbert modules , 2005, math/0502388.

[19]  Matthew Kennedy,et al.  Essential normality and the decomposability of homogeneous submodules , 2012, 1202.1797.

[20]  Kunyu Guo,et al.  Essentially normal Hilbert modules and K-homology , 2008 .