Binary classification SVM-based algorithms with interval-valued training data using triangular and Epanechnikov kernels

Classification algorithms based on different forms of support vector machines (SVMs) for dealing with interval-valued training data are proposed in the paper. L2-norm and L∞-norm SVMs are used for constructing the algorithms. The main idea allowing us to represent the complex optimization problems as a set of simple linear or quadratic programming problems is to approximate the Gaussian kernel by the well-known triangular and Epanechnikov kernels. The minimax strategy is used to choose an optimal probability distribution from the set and to construct optimal separating functions. Numerical experiments illustrate the algorithms.

[1]  Aníbal R. Figueiras-Vidal,et al.  Pattern classification with missing data: a review , 2010, Neural Computing and Applications.

[2]  Hichem Sahbi,et al.  Kernel PCA for similarity invariant shape recognition , 2007, Neurocomputing.

[3]  Arthur P. Dempster,et al.  Upper and Lower Probabilities Induced by a Multivalued Mapping , 1967, Classic Works of the Dempster-Shafer Theory of Belief Functions.

[4]  P. Pardalos,et al.  A Survey of Support Vector Machines with Uncertainties , 2014, Annals of Data Science.

[5]  L. Ghaoui,et al.  Robust Classification with Interval Data , 2003 .

[6]  Christian P. Robert,et al.  The Bayesian choice , 1994 .

[7]  Marin Ferecatu,et al.  Semantic interactive image retrieval combining visual and conceptual content description , 2007, Multimedia Systems.

[8]  Hadi Sadoghi Yazdi,et al.  Robust support vector machine-trained fuzzy system , 2014, Neural Networks.

[9]  Chiranjib Bhattacharyya,et al.  Interval Data Classification under Partial Information: A Chance-Constraint Approach , 2009, PAKDD.

[10]  Witold Pedrycz,et al.  The design of granular classifiers: A study in the synergy of interval calculus and fuzzy sets in pattern recognition , 2008, Pattern Recognit..

[11]  Y. A. Zhuk,et al.  Classification SVM Algorithms with Interval-Valued Training Data using Triangular and Epanechnikov Kernels , 2015 .

[12]  Shie Mannor,et al.  Robustness and Regularization of Support Vector Machines , 2008, J. Mach. Learn. Res..

[13]  Paula Brito,et al.  Linear discriminant analysis for interval data , 2006, Comput. Stat..

[14]  Pei-Yi Hao,et al.  Interval regression analysis using support vector networks , 2009, Fuzzy Sets Syst..

[15]  Marcos Dipinto,et al.  Discriminant analysis , 2020, Predictive Analytics.

[16]  Chiranjib Bhattacharyya,et al.  Chance constrained uncertain classification via robust optimization , 2011, Math. Program..

[17]  I. Gilboa,et al.  Maxmin Expected Utility with Non-Unique Prior , 1989 .

[18]  Davide Anguita,et al.  Support vector machines for interval discriminant analysis , 2008, Neurocomputing.

[19]  Eyke Hüllermeier,et al.  Learning from imprecise and fuzzy observations: Data disambiguation through generalized loss minimization , 2013, Int. J. Approx. Reason..

[20]  Francisco de A. T. de Carvalho,et al.  Centre and Range method for fitting a linear regression model to symbolic interval data , 2008, Comput. Stat. Data Anal..

[21]  F. Fleuret,et al.  Scale-Invariance of Support Vector Machines based on the Triangular Kernel , 2001 .

[22]  Rong Yang,et al.  Machine Learning and Data Mining in Pattern Recognition , 2012, Lecture Notes in Computer Science.

[23]  Frank Plastria,et al.  Support Vector Regression for imprecise data , 2007 .

[24]  Wenjian Wang,et al.  Determination of the spread parameter in the Gaussian kernel for classification and regression , 2003, Neurocomputing.

[25]  Bernhard Schölkopf,et al.  Estimating the Support of a High-Dimensional Distribution , 2001, Neural Computation.

[26]  Paul T. Boggs,et al.  Sequential Quadratic Programming , 1995, Acta Numerica.

[27]  Davide Anguita,et al.  Support vector machines and strictly positive definite kernel: The regularization hyperparameter is more important than the kernel hyperparameters , 2015, 2015 International Joint Conference on Neural Networks (IJCNN).

[28]  Lev V. Utkin,et al.  A new robust model of one-class classification by interval-valued training data using the triangular kernel , 2015, Neural Networks.

[29]  Michael A. Saunders,et al.  SNOPT: An SQP Algorithm for Large-Scale Constrained Optimization , 2002, SIAM J. Optim..

[30]  Colin Campbell,et al.  A Linear Programming Approach to Novelty Detection , 2000, NIPS.

[31]  Thomas Augustin,et al.  On Sharp Identification Regions for Regression Under Interval Data , 2013 .

[32]  A. Giusti,et al.  Temporal Data Classication by Imprecise Dynamical Models , 2013 .

[33]  Lev V. Utkin,et al.  A Robust One-Class Classification Model with Interval-Valued Data Based on Belief Functions and Minimax Strategy , 2014, MLDM.

[34]  F. Coolen,et al.  Interval-valued regression and classication models in the framework of machine learning , 2011 .

[35]  Yves Lechevallier,et al.  New clustering methods for interval data , 2006, Comput. Stat..

[36]  Thanh-Nghi Do,et al.  Kernel Methods and Visualization for Interval Data Mining , 2005 .

[37]  F. Plastria,et al.  Classification problems with imprecise data through separating hyperplanes , 2007 .

[38]  Vladimir Vapnik,et al.  Statistical learning theory , 1998 .

[39]  Bernhard Schölkopf,et al.  Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond , 2005, IEEE Transactions on Neural Networks.

[40]  Hisao Ishibuchi,et al.  DISCRIMINANT ANALYSIS OF MULTI-DIMENSIONAL INTERVAL DATA AND ITS APPLICATION TO CHEMICAL SENSING , 1990 .

[41]  Andreas Christmann,et al.  Support vector machines , 2008, Data Mining and Knowledge Discovery Handbook.

[42]  Hung T. Nguyen,et al.  On decision making using belief functions , 1994 .

[43]  Philippe Nivlet,et al.  Interval Discriminant Analysis: An Efficient Method to Integrate Errors In Supervised Pattern Recognition , 2001, ISIPTA.

[44]  Francisco de A. T. de Carvalho,et al.  Clustering of interval data based on city-block distances , 2004, Pattern Recognit. Lett..

[45]  Li Zhang,et al.  Linear programming support vector machines , 2002, Pattern Recognit..

[46]  Ronald Fagin,et al.  Two Views of Belief: Belief as Generalized Probability and Belief as Evidence , 1992, Artif. Intell..

[47]  Andrea Wiencierz,et al.  On the Validity of Minimin and Minimax Methods for Support Vector Regression with Interval Data , 2015 .

[48]  Chih-Jen Lin,et al.  Asymptotic Behaviors of Support Vector Machines with Gaussian Kernel , 2003, Neural Computation.

[49]  Siti Zaiton Mohd Hashim,et al.  Cluster Analysis on High-Dimensional Data: A Comparison of Density-based Clustering Algorithms , 2013 .

[50]  Marie Chavent,et al.  A Hausdorff Distance Between Hyper-Rectangles for Clustering Interval Data , 2004 .

[51]  Davide Anguita,et al.  Tikhonov, Ivanov and Morozov regularization for support vector machine learning , 2015, Machine Learning.

[52]  Olivier Beaumont,et al.  Solving interval linear systems with linear programming techniques , 1998 .