Selective Quench-Labeling of the Hafnium-Pyridyl Amido-Catalyzed Polymerization of 1-Octene in the Presence of Trialkyl-Aluminum Chain-Transfer Reagents

The pyrenyl-isonitrile quench-labeling reagent selectively labels Hf-polymeryls over Al-alkyl species allowing for quantification of active site counts in polymerization. This selectivity also enables differentiation between catalyst-bound and Al-bound polymer molecular weight distributions (MWDs) via dual detection gel permeation chromatography (GPC) methods (UV-GPC and RI-GPC) in the Hf-pyridyl amido-catalyzed polymerization of 1-octene. Inhibition of polymerization is observed when using trialkyl aluminum chain-transfer agents with this catalyst system; for AlEt3, such inhibition can be eliminated by addition of the chain-transfer reagent after initiation of polymerization. Inhibition of polymerization cannot be eliminated when AlMe3 is used in these polymerizations. With AliBu3, a larger s-branched Al-alkyl, polymerization is not inhibited. For AlEt3, the propagation to exchange coefficient (kex/kp) was determined; compared with ZnEt2, chain transfer is approximately an order of magnitude slower. Thro...

[1]  Dagmar R. D’hooge In Silico Tracking of Individual Species Accelerating Progress in Macromolecular Engineering and Design. , 2018, Macromolecular rapid communications.

[2]  J. Soares,et al.  Dynamic Monte Carlo Simulation of Olefin Block Copolymers (OBCs) Produced via Chain-Shuttling Polymerization: Effect of Kinetic Rate Constants on Chain Microstructure , 2018, Macromolecular Reaction Engineering.

[3]  V. Busico,et al.  Molecular Kinetic Study of “Chain Shuttling” Olefin Copolymerization , 2018 .

[4]  C. Landis,et al.  Chain Transfer with Dialkyl Zinc During Hafnium–Pyridyl Amido-Catalyzed Polymerization of 1-Octene: Relative Rates, Reversibility, and Kinetic Models , 2018 .

[5]  C. Landis,et al.  Mechanistic Studies of Hafnium-Pyridyl Amido-Catalyzed 1-Octene Polymerization and Chain Transfer Using Quench-Labeling Methods. , 2017, Journal of the American Chemical Society.

[6]  Matthew D. Christianson,et al.  Chromophore Quench-Labeling: An Approach to Quantifying Catalyst Speciation As Demonstrated for (EBI)ZrMe2/B(C6F5)3-Catalyzed Polymerization of 1-Hexene , 2016 .

[7]  P. Budzelaar,et al.  Of Poisons and Antidotes in Polypropylene Catalysis. , 2016, Angewandte Chemie.

[8]  Dagmar R. D’hooge,et al.  The strength of multi-scale modeling to unveil the complexity of radical polymerization , 2016 .

[9]  A. Macchioni,et al.  Comparative NMR Study on the Reactions of Hf(IV) Organometallic Complexes with Al/Zn Alkyls , 2016 .

[10]  Wonseok Hwang,et al.  End-Group-Functionalized Poly(α-olefinates) as Non-Polar Building Blocks: Self-Assembly of Sugar-Polyolefin Hybrid Conjugates. , 2016, Angewandte Chemie.

[11]  M. Saeb,et al.  A Detailed Model on Kinetics and Microstructure Evolution during Copolymerization of Ethylene and 1-Octene: From Coordinative Chain Transfer to Chain Shuttling Polymerization , 2014 .

[12]  G. Talarico,et al.  Unusual hafnium-pyridylamido/ER(n) heterobimetallic adducts (ER(n) = ZnR2 or AlR3). , 2014, Angewandte Chemie.

[13]  P. Zinck,et al.  Coordinative chain transfer polymerization. , 2013, Chemical reviews.

[14]  J. Teprovich,et al.  Synthesis and calorimetric, spectroscopic, and structural characterization of isocyanide complexes of trialkylaluminum and tri-tert-butylgallium. , 2012, Inorganic chemistry.

[15]  Robby A. Petros,et al.  Zirconium-catalyzed carboalumination of α-olefins and chain growth of aluminum alkyls: kinetics and mechanism. , 2011, Journal of the American Chemical Society.

[16]  T. Karjala,et al.  Modeling of α-Olefin Copolymerization with Chain-Shuttling Chemistry Using Dual Catalysts in Stirred-Tank Reactors: Molecular Weight Distributions and Copolymer Composition , 2010 .

[17]  Jia Wei,et al.  Aufbaureaktion redux: scalable production of precision hydrocarbons from AlR3 (R=Et or iBu) by dialkyl zinc mediated ternary living coordinative chain-transfer polymerization. , 2010, Angewandte Chemie.

[18]  V. Busico Metal-catalysed olefin polymerisation into the new millennium: a perspective outlook. , 2009, Dalton transactions.

[19]  G. Talarico,et al.  On the First Insertion of α-Olefins in Hafnium Pyridyl-Amido Polymerization Catalysts , 2009 .

[20]  E. P. Talsi,et al.  Formation and Structures of Hafnocene Complexes in MAO- and AlBui3/CPh3[B(C6F5)4]-Activated Systems , 2008 .

[21]  Jia Wei,et al.  Living Coordinative Chain-Transfer Polymerization and Copolymerization of Ethene, α-Olefins, and α,ω-Nonconjugated Dienes using Dialkylzinc as “Surrogate” Chain-Growth Sites , 2008 .

[22]  K. Abboud,et al.  Intra- and intermolecular NMR studies on the activation of arylcyclometallated hafnium pyridyl-amido olefin polymerization precatalysts. , 2008, Journal of the American Chemical Society.

[23]  L. Sita,et al.  Highly efficient, living coordinative chain-transfer polymerization of propene with ZnEt2: practical production of ultrahigh to very low molecular weight amorphous atactic polypropenes of extremely narrow polydispersity. , 2008, Journal of the American Chemical Society.

[24]  F. Alfano,et al.  Polypropylene “Chain Shuttling” at Enantiomorphous and Enantiopure Catalytic Species: Direct and Quantitative Evidence from Polymer Microstructure , 2007 .

[25]  R. Froese,et al.  Mechanism of activation of a hafnium pyridyl-amide olefin polymerization catalyst: ligand modification by monomer. , 2007, Journal of the American Chemical Society.

[26]  A. Mortreux,et al.  Controlled polyethylene chain growth on magnesium catalyzed by lanthanidocene: A living transfer polymerization for the synthesis of higher dialkyl-magnesium , 2007 .

[27]  C. Alonso-Moreno,et al.  Formation and structures of cationic zirconium complexes in ternary systems rac-(SBI)ZrX2/AlBui3/[CPh3][B(C6F5)4(X = Cl, Me) , 2007 .

[28]  G. Coates,et al.  Living alkene polymerization : New methods for the precision synthesis of polyolefins , 2007 .

[29]  P. Hustad,et al.  Catalytic Production of Olefin Block Copolymers via Chain Shuttling Polymerization , 2006, Science.

[30]  G. Galland,et al.  Tacticity of poly‐α‐olefins from poly‐1‐hexene to poly‐1‐octadecene , 2005 .

[31]  G. Britovsek,et al.  Polyethylene chain growth on zinc catalyzed by olefin polymerization catalysts: a comparative investigation of highly active catalyst systems across the transition series. , 2005, Journal of the American Chemical Society.

[32]  Robby A. Petros,et al.  Effectiveness in Catalyzing Carboalumination Can Be Inferred from the Rate of Dissociation of M/Al Dimers , 2004 .

[33]  G. Britovsek,et al.  Iron catalyzed polyethylene chain growth on zinc: a study of the factors delineating chain transfer versus catalyzed chain growth in zinc and related metal alkyl systems. , 2004, Journal of the American Chemical Society.

[34]  V. C. Gibson,et al.  Advances in non-metallocene olefin polymerization catalysis. , 2003, Chemical reviews.

[35]  O. L. Casagrande,et al.  Ethylene Polymerization Behavior of Tris(pyrazolyl)borate Titanium(IV) Complexes , 2002 .

[36]  A. Segre,et al.  Insertion of Carbon Monoxide into Zr−Polymeryl Bonds: “Snapshots” of a Running Catalyst , 2000 .

[37]  G. Coates Precise control of polyolefin stereochemistry using single-site metal catalysts. , 2000, Chemical reviews.

[38]  R. Waymouth,et al.  Group 4 ansa-Cyclopentadienyl-Amido Catalysts for Olefin Polymerization. , 1998, Chemical reviews.

[39]  E. Rytter,et al.  Termination, Isomerization, and Propagation Reactions during Ethene Polymerization Catalyzed by Cp2Zr−R+ and Cp*2Zr−R+. An Experimental and Theoretical Investigation , 1998 .

[40]  A. Mortreux,et al.  Synthesis of New Dialkylmagnesium Compounds by Living Transfer Ethylene Oligo- and Polymerization with Lanthanocene Catalysts† , 1996 .

[41]  E. Negishi,et al.  An odyssey from stoichiometric carbotitanation of alkynes to zirconium-catalysed enantioselective carboalumination of alkenes , 1996 .

[42]  M. Bochmann Cationic Group 4 metallocene complexes and their role in polymerisation catalysis: the chemistry of well defined Ziegler catalysts , 1996 .

[43]  M. Bochmann,et al.  Monomer-dimer equilibria in homo- and heterodinuclear cationic alkylzirconium complexes and their role in polymerization catalysis , 1994 .

[44]  J. Fisher,et al.  Synthesis and Structural Characterization of Dicyclopentadienylaluminum Alkyl and Tricyclopentadienylaluminum Compounds: Crystal Structure of a Bis(.eta.2-cyclopentadienyl)aluminum Alkyl Compound , 1994 .

[45]  A. Mortreux,et al.  A useful method for the synthesis of neodymocene homogeneous catalysts for ethylene polymerization , 1993 .

[46]  J. Chien,et al.  Metallocene‐methylaluminoxane catalysts for olefin polymerization. V. Comparison of Cp2ZrCl2 and CpZrCl3 , 1990 .

[47]  H. Reinheckel,et al.  Über Reaktionen mit Aluminiumalkylen, III. Zum Mechanismus der Reaktion von Triäthylaluminium mit Isocyanaten und Isothiocyanaten† , 1966 .

[48]  W. Tamplin,et al.  Safe Handling of Alkylaluminum Compounds , 1957 .

[49]  F. Mayo,et al.  Chain Transfer in the Polymerization of Styrene: The Reaction of Solvents with Free Radicals1 , 1943 .