Characterization of Uninorms on Bounded Lattices and Pre-order They Induce

[1]  Pawel Drygas On the structure of continuous uninorms , 2007, Kybernetika.

[2]  R. Mesiar,et al.  Aggregation operators: properties, classes and construction methods , 2002 .

[3]  Martin Kalina,et al.  A Characterization of Uninorms by Means of a Pre-order they Induce , 2019, EUSFLAT Conf..

[4]  Gorjan Alagic,et al.  #p , 2019, Quantum information & computation.

[5]  Shi-kai Hu,et al.  The structure of continuous uni-norms , 2001, Fuzzy Sets Syst..

[6]  Martin Kalina,et al.  Block-wise construction of commutative increasing monoids , 2017, Fuzzy Sets Syst..

[7]  Gaspar Mayor,et al.  Discrete t-norms and operations on extended multisets , 2008, Fuzzy Sets Syst..

[8]  H. Mitsch,et al.  A natural partial order for semigroups , 1986 .

[9]  Ronald R. Yager,et al.  Structure of Uninorms , 1997, Int. J. Uncertain. Fuzziness Knowl. Based Syst..

[10]  Funda Karaçal,et al.  A t-partial order obtained from t-norms , 2011, Kybernetika.

[11]  Joan Torrens,et al.  A characterization of a class of uninorms with continuous underlying operators , 2016, Fuzzy Sets Syst..

[12]  J. Dombi Basic concepts for a theory of evaluation: The aggregative operator , 1982 .

[13]  Bernard De Baets,et al.  On the Construction of Associative, Commutative and Increasing Operations by Paving , 2017, AGOP.

[14]  Funda Karaçal,et al.  Notes on locally internal uninorm on bounded lattices , 2017, Kybernetika.

[15]  Christian Eitzinger,et al.  Triangular Norms , 2001, Künstliche Intell..

[16]  Glad Deschrijver,et al.  Uninorms which are neither conjunctive nor disjunctive in interval-valued fuzzy set theory , 2013, Inf. Sci..

[17]  Bernard De Baets,et al.  A single-point characterization of representable uninorms , 2012, Fuzzy Sets Syst..

[18]  Joan Torrens,et al.  On locally internal monotonic operations , 2003, Fuzzy Sets Syst..

[19]  Martin Kalina,et al.  Construction of uninorms on bounded lattices , 2014, 2014 IEEE 12th International Symposium on Intelligent Systems and Informatics (SISY).

[20]  K. Nambooripad,et al.  The natural partial order on a regular semigroup , 1980, Proceedings of the Edinburgh Mathematical Society.

[21]  Bernard De Baets,et al.  Some Remarks on the Characterization of Idempotent Uninorms , 2010, IPMU.

[22]  Józef Drewniak,et al.  On a Class of Uninorms , 2002, Int. J. Uncertain. Fuzziness Knowl. Based Syst..

[23]  A. H. Clifford,et al.  Naturally Totally Ordered Commutative Semigroups , 1954 .

[24]  Martin Kalina On uninorms and nullnorms on direct product of bounded lattices , 2016 .

[25]  Pawel Drygas,et al.  On Monotonic Operations which Are Locally Internal on Some Subset of Their Domain , 2007, EUSFLAT Conf..

[26]  Radko Mesiar,et al.  On the structure of special classes of uninorms , 2014, Fuzzy Sets Syst..

[27]  Dana Hlinená,et al.  A class of implications related to Yager's f-implications , 2014, Inf. Sci..

[28]  Martin Kalina,et al.  Construction of commutative and associative operations by paving , 2015, IFSA-EUSFLAT.

[29]  Radko Mesiar,et al.  Uninorms on bounded lattices , 2015, Fuzzy Sets Syst..

[30]  Ronald R. Yager,et al.  Uninorm aggregation operators , 1996, Fuzzy Sets Syst..

[31]  Funda Karaçal,et al.  Ordering based on uninorms , 2016, Inf. Sci..