On branching heuristics for the bi-objective 0/1 unidimensional knapsack problem

This paper focuses on branching strategies that are involved in branch and bound algorithms when solving multi-objective optimization problems. The choice of the branching variable at each node of the search tree constitutes indeed an important component of these algorithms. In this work we focus on multi-objective knapsack problems. In the literature, branching heuristics used for these problems are static, i.e., the order on the variables is determined prior to the execution. This study investigates the benefit of defining more sophisticated branching strategies. We first analyze and compare a representative set of classic branching heuristics and conclude that none can be identified as the best overall heuristic. Using an oracle, we highlight that combining branching heuristics within the same branch and bound algorithm leads to considerably reduced search trees but induces high computational costs. Based on learning adaptive techniques, we propose then dynamic adaptive branching strategies that are able to select the suitable heuristic to apply at each node of the search tree. Experiments are conducted on the bi-objective 0/1 unidimensional knapsack problem.

[1]  Arne Thesen,et al.  A recursive branch and bound algorithm for the multidimensional knapsack problem , 1975 .

[2]  Matthias Ehrgott,et al.  Bound sets for biobjective combinatorial optimization problems , 2007, Comput. Oper. Res..

[3]  F. Glover A Multiphase-Dual Algorithm for the Zero-One Integer Programming Problem , 1965 .

[4]  Luís Paquete,et al.  Algorithmic improvements on dynamic programming for the bi-objective {0,1} knapsack problem , 2013, Comput. Optim. Appl..

[5]  Michèle Sebag,et al.  Adaptive Operator Selection and Management in Evolutionary Algorithms , 2012, Autonomous Search.

[6]  Julien Jorge Nouvelles propositions pour la résolution exacte du sac à dos multi-objectif unidimensionnel en variables binaires. (New propositions for the exact solution of the unidimensional multi-criteria knapsack problem with binary variables) , 2010 .

[7]  Hasan Pirkul,et al.  Efficient algorithms for solving multiconstraint zero-one knapsack problems to optimality , 1985, Math. Program..

[8]  J. Teghem,et al.  Solving Multi-Objective Knapsack Problem by a Branch-and-Bound Procedure , 1997 .

[9]  George Mavrotas,et al.  An improved version of the augmented ε-constraint method (AUGMECON2) for finding the exact pareto set in multi-objective integer programming problems , 2013, Appl. Math. Comput..

[10]  Y. Aneja,et al.  BICRITERIA TRANSPORTATION PROBLEM , 1979 .

[11]  Christian Bessiere,et al.  Multi-Armed Bandits for Adaptive Constraint Propagation , 2015, IJCAI.

[12]  E. S. Page CONTINUOUS INSPECTION SCHEMES , 1954 .

[13]  P. Kolesar A Branch and Bound Algorithm for the Knapsack Problem , 1967 .

[14]  Anthony Przybylski,et al.  A two phase method for multi-objective integer programming and its application to the assignment problem with three objectives , 2010, Discret. Optim..

[15]  José Rui Figueira,et al.  Solving bicriteria 0-1 knapsack problems using a labeling algorithm , 2003, Comput. Oper. Res..

[16]  Daniel Vanderpooten,et al.  Implementing an efficient fptas for the 0-1 multi-objective knapsack problem , 2009, Eur. J. Oper. Res..

[17]  Daniel Vanderpooten,et al.  Solving efficiently the 0-1 multi-objective knapsack problem , 2009, Comput. Oper. Res..

[18]  Weihua Zhang,et al.  A simple augmented ∊-constraint method for multi-objective mathematical integer programming problems , 2014, Eur. J. Oper. Res..

[19]  Paolo Toth,et al.  Knapsack Problems: Algorithms and Computer Implementations , 1990 .

[20]  George Mavrotas,et al.  Solving multiobjective, multiconstraint knapsack problems using mathematical programming and evolutionary algorithms , 2010, Eur. J. Oper. Res..

[21]  Michèle Sebag,et al.  Bandit-Based Search for Constraint Programming , 2013, CP.

[22]  S. Martello,et al.  Dynamic Programming and Strong Bounds for the 0-1 Knapsack Problem , 1999 .

[23]  Charles Delort Algorithmes d'énumération implicite pour l'optimisation multi-objectifs exacte : exploitation d'ensembles bornant et application aux problèmes de sac à dos et d'affectation , 2011 .

[24]  Murat Köksalan,et al.  An Exact Algorithm for Finding Extreme Supported Nondominated Points of Multiobjective Mixed Integer Programs , 2010, Manag. Sci..

[25]  David E. Goldberg,et al.  Probability Matching, the Magnitude of Reinforcement, and Classifier System Bidding , 1990, Machine Learning.

[26]  Michèle Sebag,et al.  Adaptive operator selection with dynamic multi-armed bandits , 2008, GECCO '08.

[27]  Francis Sourd,et al.  A Multiobjective Branch-and-Bound Framework: Application to the Biobjective Spanning Tree Problem , 2008, INFORMS J. Comput..

[28]  Xavier Gandibleux,et al.  A survey and annotated bibliography of multiobjective combinatorial optimization , 2000, OR Spectr..

[29]  Anthony Przybylski,et al.  Multi-objective branch and bound , 2017, Eur. J. Oper. Res..

[30]  Peter Auer,et al.  Finite-time Analysis of the Multiarmed Bandit Problem , 2002, Machine Learning.

[31]  M. Wiecek,et al.  Dynamic programming approaches to the multiple criteria knapsack problem , 2000 .

[32]  Jacques Teghem,et al.  Two-phases Method and Branch and Bound Procedures to Solve the Bi–objective Knapsack Problem , 1998, J. Glob. Optim..

[33]  Olivier Spanjaard,et al.  Using Bound Sets in Multiobjective Optimization: Application to the Biobjective Binary Knapsack Problem , 2010, SEA.

[34]  Wei Shih,et al.  A Branch and Bound Method for the Multiconstraint Zero-One Knapsack Problem , 1979 .

[35]  Arnaud Fréville,et al.  Tabu Search Based Procedure for Solving the 0-1 MultiObjective Knapsack Problem: The Two Objectives Case , 2000, J. Heuristics.