On branching heuristics for the bi-objective 0/1 unidimensional knapsack problem
暂无分享,去创建一个
[1] Arne Thesen,et al. A recursive branch and bound algorithm for the multidimensional knapsack problem , 1975 .
[2] Matthias Ehrgott,et al. Bound sets for biobjective combinatorial optimization problems , 2007, Comput. Oper. Res..
[3] F. Glover. A Multiphase-Dual Algorithm for the Zero-One Integer Programming Problem , 1965 .
[4] Luís Paquete,et al. Algorithmic improvements on dynamic programming for the bi-objective {0,1} knapsack problem , 2013, Comput. Optim. Appl..
[5] Michèle Sebag,et al. Adaptive Operator Selection and Management in Evolutionary Algorithms , 2012, Autonomous Search.
[6] Julien Jorge. Nouvelles propositions pour la résolution exacte du sac à dos multi-objectif unidimensionnel en variables binaires. (New propositions for the exact solution of the unidimensional multi-criteria knapsack problem with binary variables) , 2010 .
[7] Hasan Pirkul,et al. Efficient algorithms for solving multiconstraint zero-one knapsack problems to optimality , 1985, Math. Program..
[8] J. Teghem,et al. Solving Multi-Objective Knapsack Problem by a Branch-and-Bound Procedure , 1997 .
[9] George Mavrotas,et al. An improved version of the augmented ε-constraint method (AUGMECON2) for finding the exact pareto set in multi-objective integer programming problems , 2013, Appl. Math. Comput..
[10] Y. Aneja,et al. BICRITERIA TRANSPORTATION PROBLEM , 1979 .
[11] Christian Bessiere,et al. Multi-Armed Bandits for Adaptive Constraint Propagation , 2015, IJCAI.
[12] E. S. Page. CONTINUOUS INSPECTION SCHEMES , 1954 .
[13] P. Kolesar. A Branch and Bound Algorithm for the Knapsack Problem , 1967 .
[14] Anthony Przybylski,et al. A two phase method for multi-objective integer programming and its application to the assignment problem with three objectives , 2010, Discret. Optim..
[15] José Rui Figueira,et al. Solving bicriteria 0-1 knapsack problems using a labeling algorithm , 2003, Comput. Oper. Res..
[16] Daniel Vanderpooten,et al. Implementing an efficient fptas for the 0-1 multi-objective knapsack problem , 2009, Eur. J. Oper. Res..
[17] Daniel Vanderpooten,et al. Solving efficiently the 0-1 multi-objective knapsack problem , 2009, Comput. Oper. Res..
[18] Weihua Zhang,et al. A simple augmented ∊-constraint method for multi-objective mathematical integer programming problems , 2014, Eur. J. Oper. Res..
[19] Paolo Toth,et al. Knapsack Problems: Algorithms and Computer Implementations , 1990 .
[20] George Mavrotas,et al. Solving multiobjective, multiconstraint knapsack problems using mathematical programming and evolutionary algorithms , 2010, Eur. J. Oper. Res..
[21] Michèle Sebag,et al. Bandit-Based Search for Constraint Programming , 2013, CP.
[22] S. Martello,et al. Dynamic Programming and Strong Bounds for the 0-1 Knapsack Problem , 1999 .
[23] Charles Delort. Algorithmes d'énumération implicite pour l'optimisation multi-objectifs exacte : exploitation d'ensembles bornant et application aux problèmes de sac à dos et d'affectation , 2011 .
[24] Murat Köksalan,et al. An Exact Algorithm for Finding Extreme Supported Nondominated Points of Multiobjective Mixed Integer Programs , 2010, Manag. Sci..
[25] David E. Goldberg,et al. Probability Matching, the Magnitude of Reinforcement, and Classifier System Bidding , 1990, Machine Learning.
[26] Michèle Sebag,et al. Adaptive operator selection with dynamic multi-armed bandits , 2008, GECCO '08.
[27] Francis Sourd,et al. A Multiobjective Branch-and-Bound Framework: Application to the Biobjective Spanning Tree Problem , 2008, INFORMS J. Comput..
[28] Xavier Gandibleux,et al. A survey and annotated bibliography of multiobjective combinatorial optimization , 2000, OR Spectr..
[29] Anthony Przybylski,et al. Multi-objective branch and bound , 2017, Eur. J. Oper. Res..
[30] Peter Auer,et al. Finite-time Analysis of the Multiarmed Bandit Problem , 2002, Machine Learning.
[31] M. Wiecek,et al. Dynamic programming approaches to the multiple criteria knapsack problem , 2000 .
[32] Jacques Teghem,et al. Two-phases Method and Branch and Bound Procedures to Solve the Bi–objective Knapsack Problem , 1998, J. Glob. Optim..
[33] Olivier Spanjaard,et al. Using Bound Sets in Multiobjective Optimization: Application to the Biobjective Binary Knapsack Problem , 2010, SEA.
[34] Wei Shih,et al. A Branch and Bound Method for the Multiconstraint Zero-One Knapsack Problem , 1979 .
[35] Arnaud Fréville,et al. Tabu Search Based Procedure for Solving the 0-1 MultiObjective Knapsack Problem: The Two Objectives Case , 2000, J. Heuristics.