Big data driven perovskite solar cell stability analysis

[1]  F. Bella,et al.  High Open-Circuit Voltage Cs2 AgBiBr6 Carbon-Based Perovskite Solar Cells via Green Processing of Ultrasonic Spray-Coated Carbon Electrodes from Waste Tire Sources. , 2022, ChemSusChem.

[2]  Liyuan Han,et al.  Sustainable Pb Management in Perovskite Solar Cells toward Eco‐Friendly Development , 2022, Advanced Energy Materials.

[3]  F. Bella,et al.  Integrated energy conversion and storage devices: interfacing solar cells, batteries and supercapacitors , 2022, Energy Storage Materials.

[4]  F. Bella,et al.  A review of textile dye-sensitized solar cells for wearable electronics , 2022, Ionics.

[5]  M. Meilă,et al.  Water-Accelerated Photooxidation of CH3NH3PbI3 Perovskite. , 2022, Journal of the American Chemical Society.

[6]  Yiming Li,et al.  Temperature-Reliable Low-Dimensional Perovskites Passivated Black-phase CsPbI3 toward Stable and Efficient Photovoltaics. , 2022, Angewandte Chemie.

[7]  T. Jacobsson,et al.  The Perovskite Database Project: A Perspective on Collective Data Sharing , 2022, ACS Energy Letters.

[8]  D. Kuang,et al.  Cooperative Effects of Dopant-Free Hole-Transporting Materials and Polycarbonate Film for Sustainable Perovskite Solar Cells , 2022, SSRN Electronic Journal.

[9]  N. Park,et al.  Quasi-Two-Dimensional Perovskite Solar Cells with Efficiency Exceeding 22% , 2022, ACS Energy Letters.

[10]  Assaf Y Anderson,et al.  An open-access database and analysis tool for perovskite solar cells based on the FAIR data principles , 2021, Nature Energy.

[11]  Jun Hee Lee,et al.  Pseudo-halide anion engineering for α-FAPbI3 perovskite solar cells , 2021, Nature.

[12]  A. Selskis,et al.  Cesium-Containing Triple Cation Perovskite Solar Cells , 2021, Coatings.

[13]  Seong Sik Shin,et al.  Efficient perovskite solar cells via improved carrier management , 2021, Nature.

[14]  J. Noh,et al.  Intact 2D/3D halide junction perovskite solar cells via solid-phase in-plane growth , 2021 .

[15]  F. Gao,et al.  Mechanisms and Suppression of Photoinduced Degradation in Perovskite Solar Cells , 2020, Advanced Energy Materials.

[16]  Dong Suk Kim,et al.  Stable perovskite solar cells with efficiency exceeding 24.8% and 0.3-V voltage loss , 2020, Science.

[17]  Hong Xia,et al.  Perovskite Single‐Crystal Microwire‐Array Photodetectors with Performance Stability beyond 1 Year , 2020, Advanced materials.

[18]  Jinsong Hu,et al.  High‐Efficiency CsPbI2Br Perovskite Solar Cells with Dopant‐Free Poly(3‐hexylthiophene) Hole Transporting Layers , 2020, Advanced Energy Materials.

[19]  Haoran Jiang,et al.  Two-Stage Ultraviolet Degradation of Perovskite Solar Cells Induced by the Oxygen Vacancy-Ti4+ States , 2020, iScience.

[20]  Qiang Sun,et al.  Stabilization of Inorganic CsPb 0.5 Sn 0.5 I 2 Br Perovskite Compounds by Antioxidant Tea Polyphenol , 2020 .

[21]  Kai Zhu,et al.  Consensus statement for stability assessment and reporting for perovskite photovoltaics based on ISOS procedures , 2020, Nature Energy.

[22]  Zhanhao Hu,et al.  Reduction of lead leakage from damaged lead halide perovskite solar modules using self-healing polymer-based encapsulation , 2019, Nature Energy.

[23]  M. Grätzel,et al.  Ultrahydrophobic 3D/2D fluoroarene bilayer-based water-resistant perovskite solar cells with efficiencies exceeding 22% , 2019, Science Advances.

[24]  Xingzhong Zhao,et al.  Hydrophobic Cu2O Quantum Dots Enabled by Surfactant Modification as Top Hole‐Transport Materials for Efficient Perovskite Solar Cells , 2019, Advanced science.

[25]  Xuewen Yin,et al.  Perovskite/Poly[bis(4-phenyl)(2,4,6-trimethylphenyl)amine] Bulk Heterojunction for High-Efficient Carbon-Based Large-Area Solar Cells by Gradient Engineering. , 2018, ACS applied materials & interfaces.

[26]  Rongrong Cheacharoen,et al.  Understanding Degradation Mechanisms and Improving Stability of Perovskite Photovoltaics. , 2018, Chemical reviews.

[27]  T. Hayat,et al.  The Effect of Hydrophobicity of Ammonium Salts on Stability of Quasi‐2D Perovskite Materials in Moist Condition , 2018 .

[28]  Dieter Neher,et al.  Measuring Aging Stability of Perovskite Solar Cells , 2018 .

[29]  Longwei Yin,et al.  Surface passivation engineering strategy to fully-inorganic cubic CsPbI3 perovskites for high-performance solar cells , 2018, Nature Communications.

[30]  Tae-Youl Yang,et al.  A Low‐Temperature Thin‐Film Encapsulation for Enhanced Stability of a Highly Efficient Perovskite Solar Cell , 2018 .

[31]  Jinsong Huang,et al.  Enhanced Thermal Stability in Perovskite Solar Cells by Assembling 2D/3D Stacking Structures. , 2018, The journal of physical chemistry letters.

[32]  Neha Arora,et al.  Perovskite solar cells with CuSCN hole extraction layers yield stabilized efficiencies greater than 20% , 2017, Science.

[33]  P. Lund,et al.  Impact of H2O on organic–inorganic hybrid perovskite solar cells , 2017 .

[34]  Qingmin Ji,et al.  Bismuth Incorporation Stabilized α-CsPbI3 for Fully Inorganic Perovskite Solar Cells , 2017 .

[35]  Yanjun Fang,et al.  Suppressed Ion Migration in Low-Dimensional Perovskites , 2017 .

[36]  M. Green,et al.  An effective method of predicting perovskite solar cell lifetime–Case study on planar CH3NH3PbI3 and HC(NH2)2PbI3 perovskite solar cells and hole transfer materials of spiro-OMeTAD and PTAA , 2017 .

[37]  Ullrich Steiner,et al.  Perovskite Solar Cell Stability in Humid Air: Partially Reversible Phase Transitions in the PbI2‐CH3NH3I‐H2O System , 2016 .

[38]  Guangda Niu,et al.  Effect of cesium chloride modification on the film morphology and UV-induced stability of planar perovskite solar cells , 2016 .

[39]  T. Miyasaka,et al.  Stability of solution-processed MAPbI3 and FAPbI3 layers. , 2016, Physical chemistry chemical physics : PCCP.

[40]  Ursula Rothlisberger,et al.  Entropic stabilization of mixed A-cation ABX3 metal halide perovskites for high performance perovskite solar cells , 2016 .

[41]  Aron Walsh,et al.  Ionic transport in hybrid lead iodide perovskite solar cells , 2015, Nature Communications.

[42]  Young Chan Kim,et al.  Compositional engineering of perovskite materials for high-performance solar cells , 2015, Nature.

[43]  Anthony K. Cheetham,et al.  Solid-state principles applied to organic–inorganic perovskites: new tricks for an old dog , 2014 .

[44]  Nripan Mathews,et al.  Formamidinium-Containing Metal-Halide: An Alternative Material for Near-IR Absorption Perovskite Solar Cells , 2014 .

[45]  Seigo Ito,et al.  Effects of Surface Blocking Layer of Sb2S3 on Nanocrystalline TiO2 for CH3NH3PbI3 Perovskite Solar Cells , 2014 .

[46]  M. Johnston,et al.  Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells , 2014 .

[47]  Sandeep Kumar Pathak,et al.  Overcoming ultraviolet light instability of sensitized TiO2 with meso-superstructured organometal tri-halide perovskite solar cells , 2013, Nature Communications.

[48]  N. Park,et al.  Lead Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9% , 2012, Scientific Reports.

[49]  O. Haillant,et al.  An Arrhenius approach to estimating organic photovoltaic module weathering acceleration factors , 2011 .

[50]  Suren A. Gevorgyan,et al.  Consensus stability testing protocols for organic photovoltaic materials and devices , 2011 .

[51]  Tsutomu Miyasaka,et al.  Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. , 2009, Journal of the American Chemical Society.

[52]  J. Wahren,et al.  New Tricks by an Old Dog , 2008, Experimental diabetes research.

[53]  R. D. Shannon Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides , 1976 .

[54]  V. M. Goldschmidt,et al.  Die Gesetze der Krystallochemie , 1926, Naturwissenschaften.

[55]  Student,et al.  THE PROBABLE ERROR OF A MEAN , 1908 .

[56]  Yani Chen,et al.  2D Ruddlesden–Popper Perovskites for Optoelectronics , 2018, Advanced materials.

[57]  Michael Grätzel,et al.  Systematic investigation of the impact of operation conditions on the degradation behaviour of perovskite solar cells , 2018, Nature Energy.