2,6‐Dimethyl Semibullvalene‐2,6‐dicarboxylates

The enolized β-oxo ester 9 is reduced by NaB(CN)H3 in weakly acidic methanol solution to afford an almost quantitative yield of a mixture of diastereomeric β-hydroxy esters 10. On treatment with phosphorus oxychloride in pyridine, 10 is converted into a mixture of the β-chloro esters exo-11, endo-11, exo-12, endo-12, and 13 which is separated in part by chromatography. Sodium methoxide in methanol eliminates hydrogen chloride from the crude mixture of β-chloro esters producing the α,β-unsaturated ester 7a in 84% yield based on 9. – Acid-catalysed equilibration of the known vinyl sulphides C2- and Cs-15 is carried out on large scale furnishing a 73:27 ratio of C2- and Cs-15. This mixture is oxidized to the sulphones C2- and Cs-16 which are allowed to react with sodium cyanide supported on aluminium oxide affording the α,β-unsaturated dinitrile 17 which is isolated by chromatography. Thus, 17 is now available on a 30-g scale. Methanolysis of 17 by a prolonged treatment with hydrogen chloride in methanol followed by hydrolysis of the Pinner salt leads to 7b. – Both α,β-unsaturated esters 7a and b are readily brominated at the allylic positions by N-bromosuccinimide to yield the γ,γ′-dibromo esters 19a and b. Zinc-copper couple in tetrahydrofuran converts 19a and b into the semibullvalenedicarboxylates 2a and b. While 2a is persistent only in dilute solutions, thus frustrating all attempts at its isolation, 2b exhibits considerable stability in solution and forms lemon-coloured crystals. The semibullvalenedicarboxylates 2a and b undergo a very rapid degenerate Cope rearrangement in solution. In addition, 2b exhibits reversible thermochromism in both solution and solid state. The structures of the new compounds are based on spectroscopic evidence, including mass, IR, and NMR spectra. The configurations of exo-11, exo-12, 19a and b are established by X-ray diffraction analyses.

[1]  K. Peters,et al.  2,6‐Dicyansemibullvalen , 1992 .

[2]  K. Peters,et al.  Synthesis and X‐Ray Diffraction Analysis of Bis(phenylsulphonyl)semibullvalenes. Lifting of the Degeneracy of Semibullvalenes in the Crystal Lattice[1] , 1992 .

[3]  A. Gupta,et al.  General approach for the synthesis of polyquinenes via the Weiss reaction , 1991 .

[4]  K. Peters,et al.  2,6‐Dicyan‐1,5‐tetramethylensemibullvalene , 1989 .

[5]  A. Benesi,et al.  The cope rearrangement of 1,5-dimethylsemibullvalene-2,6- and 3,7-dicarbonitriles in the solid state , 1989 .

[6]  M. Dewar,et al.  An AMI study of the cope rearrangements of bullvalene, barbaralane, semibullvalene, and derivatives of semibullvalene , 1988 .

[7]  W. Flitsch,et al.  Hydrazinüberbrückte Annulene, 61) Synthese und Eigenschaften von 10b, 10c‐Diazadicyclopenta[ef,kl]heptalenen (Diazaazupyrene)2) , 1987 .

[8]  H. Schnering,et al.  Synthese, Struktur und Cope-Umlagerung einiger 3,7-Dicyan-1,5-dimethylsemibullvalene , 1986 .

[9]  J. Clark,et al.  Supported cyanides: the interaction of potassium cyanide with high surface area inorganic support materials and the development of highly reactive cyanide reagents , 1985 .

[10]  H. Schnering,et al.  Synthese und Struktur eines hochsubstituierten Tetracyclo[3.3.0.02,8.04,6]octans (Nortriasteran) , 1985 .

[11]  H. Schnering,et al.  Synthese, Struktur und thermische Umlagerungen des 2,6‐Dicyan‐1,5‐dimethylsemibullvalens , 1985 .

[12]  H. Schnering,et al.  Synthese und Struktur von 2,6-Dicyanbicyclo[3.3.1]nona-2,6-dienen und 2,6-Dicyanbarbaralanen , 1984 .

[13]  H. Quast,et al.  Temperaturabhängigkeit des UV-Spektrums von 1,5-Dimethyl-2,6-semibullvalendicarbonitril, Hinweis auf ein Gleichgewicht mit einem delokalisierten, homoaromatischen Isomer† , 1984 .

[14]  J. Christ,et al.  Temperature Dependence of the UV Spectrum of 1,5‐Dimethyl‐2,6‐semibullvalenedicarbonitrile; Evidence for an Equilibrium with a Delocalized, Homoaromatic Isomer , 1984 .

[15]  A. Freyer,et al.  The degenerate Cope Rearrangement in 2,6‐Barbaralanedicarbonitrile , 1984 .

[16]  C. Braig,et al.  The cope rearrangement in substituted semibullvalenes as studied by dynamic 13C NMR , 1984 .

[17]  J. Sauer,et al.  Struktur von 1,5‐Dimethylsemibullvalen‐3,7‐dicarbonsäure‐dimethylester und 1,5‐Dimethylsemibullvalen‐3,7‐dicarbonitril , 1983 .

[18]  J. Dannenberg,et al.  Semibullvalenes. 2. A MNDO theoretical study of the rearrangements of semibullvalene and several of its derivatives , 1983 .

[19]  J. Sauer,et al.  Zum mechanismus der semibullvalen-bildung aus 1,2,4,5-tetrazinen und bifunktionellen cyclopropenen , 1983 .

[20]  M. J. Goldstein,et al.  Dilithium semibullvalenide: an unusual organolithium compound extends the scope of homoaromaticity , 1982 .

[21]  M. Littmann,et al.  2, 6-dicyan-1, 5-dimethyl-semibullvalen , 1982 .

[22]  J. Christ,et al.  2,6-dicyano-1,5-dimethylsemibullvalene as a probe for homoaromatic molecules of the Dewar-Hoffman type , 1982 .

[23]  J. Dannenberg,et al.  Semibullvalenes. 1. Synthesis and crystal structure of 1,5-dimethyl-2,4,6,8-tetrakis(carbomethoxy)tricyclo[3.3.0.02,8]octa-3,6-diene a donor-acceptor-substituted semibullvalene , 1981 .

[24]  H. Quast,et al.  2,6‐Barbaralane Dicarbonitrile: A Probe for Dewar‐Hoffmann‐Type Homoaromatic Molecules , 1981 .

[25]  J. Sauer,et al.  Eintopfsynthese für substituierte Semibullvalene , 1980 .

[26]  J. Sauer,et al.  One‐Pot Synthesis of Substituted Semibullvalenes , 1980 .

[27]  G. Helmchen,et al.  Synthesis of the stereoisomers of 17,21-dimethylheptatriacontane - sex recognition pheromone of the tsetse fly , 1980 .

[28]  R. Highet,et al.  Reaction of dimethyl 3-ketoglutarate with 1,2-dicarbonyl compounds. 8. Selective base-catalyzed decarbomethoxylation of tetramethyl 3,7-dioxo-cis-bicyclo[3.3.0]octane-2,4,6,8-tetracarboxylate. Preparation of 2,6-dicarbomethoxy-cis-bicyclo[3.3.0]octane-3,7-dione , 1977 .

[29]  J. Daub,et al.  Notiz über eine ergiebige Methode zur Darstellung von Cycloheptatrien‐(2.4.6)‐carbonsäure‐(1) , 1972 .

[30]  M. Dewar,et al.  Ground states of .sigma.-bonded molecules. XIV. Application of energy partitioning to the MINDO [modified intermediate neglect of differential overlap] /2 method and a study of the Cope rearrangement , 1971 .

[31]  R. Hoffmann,et al.  Cope rearrangement revisited , 1971 .

[32]  E. Jaeger,et al.  PYRROLIDINEDIOLS. 1-SUBSTITUTED 3-HYDROXYMETHL-4-HYDROXYPYRROLIDINES AND DERIVATIVES. , 1965, The Journal of organic chemistry.

[33]  T. Utne,et al.  Notes- 9(11)-Dehydro Cortical Steroids. Synthesis of 9(11)-Anhydro-17α-hydroxycorticosterone Acetate and 9(11)-Anhydrocorticosterone Acetate , 1960 .

[34]  R. Graber,et al.  Δ9,(11)-Dehydro Cortical Steroids. Synthesis of Δ9,(11)-Anhydro-17-hydroxycorticosterone Acetate , 1953 .