A Comparative Scaling Analysis of Metallic and Carbon Nanotube Interconnections for Nanometer Scale VLSI Technologies

This paper addresses the critical issue of scaling limits of local interconnects, contact plugs and local vias made of metal. It is shown that the current carrying capacity of copper vias/contacts fails to meet ITRS current density requirements beyond the 45 nm technology node. Additionally, the electrical properties of local interconnects/vias made of carbon nanotube (CNT) arrays are analyzed in comparison with copper and process technology requirements are laid out that would make interconnects composed of CNT arrays a viable solution to meet the challenges of nanometer scale interconnects.

[1]  M. Shatzkes,et al.  Electrical-Resistivity Model for Polycrystalline Films: the Case of Arbitrary Reflection at External Surfaces , 1970 .

[2]  Kwon,et al.  Unusually high thermal conductivity of carbon nanotubes , 2000, Physical review letters.

[3]  Dekker,et al.  High-field electrical transport in single-wall carbon nanotubes , 1999, Physical review letters.

[4]  Qiang Chen,et al.  A compact physical via blockage model , 2000, IEEE Trans. Very Large Scale Integr. Syst..

[5]  P. Ajayan,et al.  Reliability and current carrying capacity of carbon nanotubes , 2001 .

[6]  P. Avouris,et al.  Current saturation and electrical breakdown in multiwalled carbon nanotubes. , 2001, Physical review letters.

[7]  K. Banerjee,et al.  Global (interconnect) warming , 2001 .

[8]  W. Steinhögl,et al.  Size-dependent resistivity of metallic wires in the mesoscopic range , 2002 .

[9]  Franz Kreupl,et al.  Carbon nanotubes in interconnect applications , 2002 .

[10]  P. McEuen,et al.  Single-walled carbon nanotube electronics , 2002 .

[11]  Sungjun Im,et al.  Via design and scaling strategy for nanometer scale interconnect technologies , 2002, Digest. International Electron Devices Meeting,.

[12]  M. Meyyappan,et al.  Bottom-up approach for carbon nanotube interconnects , 2003 .

[13]  Wen J. Li,et al.  Bulk carbon nanotube as thermal sensing and electronic circuit elements , 2003, Proceedings of the 2003 International Symposium on Circuits and Systems, 2003. ISCAS '03..

[14]  M. Meyyappan,et al.  Carbon nanotube interconnects: a process solution , 2003, Proceedings of the IEEE 2003 International Interconnect Technology Conference (Cat. No.03TH8695).

[15]  S. Datta Electrical resistance: an atomistic view , 2004, cond-mat/0408319.

[16]  A. Kawabata,et al.  Carbon nanotube vias for future LSI interconnects , 2004, Proceedings of the IEEE 2004 International Interconnect Technology Conference (IEEE Cat. No.04TH8729).