Surface plasmon modes of a single silver nanorod: an electron energy loss study.

We present an electron energy loss study using energy filtered TEM of spatially resolved surface plasmon excitations on a silver nanorod of aspect ratio 14.2 resting on a 30 nm thick silicon nitride membrane. Our results show that the excitation is quantized as resonant modes whose intensity maxima vary along the nanorod's length and whose wavelength becomes compressed towards the ends of the nanorod. Theoretical calculations modelling the surface plasmon response of the silver nanorod-silicon nitride system show the importance of including retardation and substrate effects in order to describe accurately the energy dispersion of the resonant modes.

[1]  B. Luk’yanchuk,et al.  Field enhancement of gold optical nanoantennas mounted on a dielectric waveguide , 2010 .

[2]  N. Christensen The Band Structure of Silver and Optical Interband Transitions , 1972 .

[3]  Eduardo A Coronado,et al.  Near-field enhancement of multipole plasmon resonances in Ag and Au nanowires. , 2009, The journal of physical chemistry. A.

[4]  Chung-Yuan Mou,et al.  Probing bright and dark surface-plasmon modes in individual and coupled noble metal nanoparticles using an electron beam. , 2009, Nano letters.

[5]  W. Barnes,et al.  Surface plasmon subwavelength optics , 2003, Nature.

[6]  Younan Xia,et al.  Rapid synthesis of silver nanowires through a CuCl- or CuCl2-mediated polyol process , 2008 .

[7]  Moussa N'Gom,et al.  Single particle plasmon spectroscopy of silver nanowires and gold nanorods. , 2008, Nano letters.

[8]  Bo E. Sernelius,et al.  Surface modes in physics , 2001 .

[9]  C T Koch,et al.  Direct imaging of surface plasmon resonances on single triangular silver nanoprisms at optical wavelength using low-loss EFTEM imaging. , 2009, Optics letters.

[10]  Peter Nordlander,et al.  Electron energy-loss spectroscopy (EELS) of surface plasmons in single silver nanoparticles and dimers: influence of beam damage and mapping of dark modes. , 2009, ACS nano.

[11]  W. Sigle,et al.  SESAM: Exploring the Frontiers of Electron Microscopy , 2006, Microscopy and Microanalysis.

[12]  R. Egerton Limits to the spatial, energy and momentum resolution of electron energy-loss spectroscopy. , 2007, Ultramicroscopy.

[13]  Lukas Novotny,et al.  Effective wavelength scaling for optical antennas. , 2007, Physical review letters.

[14]  L. Liz‐Marzán,et al.  Mapping surface plasmons on a single metallic nanoparticle , 2007 .

[15]  Pierre-Michel Adam,et al.  Role of localized surface plasmons in surface-enhanced Raman scattering of shape-controlled metallic particles in regular arrays , 2005 .

[16]  David B. Williams,et al.  Transmission Electron Microscopy , 1996 .

[17]  Bernhard Schaffer,et al.  Automated spatial drift correction for EFTEM image series. , 2004, Ultramicroscopy.

[18]  Naoki Yamamoto,et al.  Light emission by surface plasmons on nanostructures of metal surfaces induced by high‐energy electron beams , 2006 .

[19]  Masashi Watanabe,et al.  Mapping surface plasmons at the nanometre scale with an electron beam , 2007 .

[20]  G. Benner,et al.  Energy resolution of an Omega-type monochromator and imaging properties of the MANDOLINE filter , 2010 .

[21]  F. D. Abajo,et al.  Optical excitations in electron microscopy , 2009, 0903.1669.

[22]  Gianluigi A. Botton,et al.  Multipolar plasmonic resonances in silver nanowire antennas imaged with a subnanometer electron probe. , 2011, Nano letters.

[23]  B. Liedberg,et al.  Gas detection by means of surface plasmon resonance , 1982 .

[24]  A. Polman,et al.  Direct observation of plasmonic modes in au nanowires using high-resolution cathodoluminescence spectroscopy. , 2007, Nano letters.

[25]  Ulrich Hohenester,et al.  High-resolution surface plasmon imaging of gold nanoparticles by energy-filtered transmission electron microscopy , 2009 .

[26]  Naoki Yamamoto,et al.  Mapping plasmons in nanoantennas via cathodoluminescence , 2008 .

[27]  W. Sigle,et al.  Electron energy losses in Ag nanoholes--from localized surface plasmon resonances to rings of fire. , 2009, Optics letters.