Gaussian beam prestack depth migration of converted wave in TI media

Abstract Increasing amounts of multi-component seismic data are being acquired on land and offshore because more complete seismic wavefield information is beneficial for structural imaging, fluid detection, and reservoir monitoring. S-waves are typically influenced more by anisotropy in a medium than are P-waves; as a result, the anisotropy cannot be ignored during the converted PS-wave imaging. Gaussian beam migration, an elegant and efficient depth migration method, is becoming a new topic in the study of PS-wave migration; its accuracy is comparable to that of wave-equation migration, and its flexibility is comparable to that of Kirchhoff migration. In this paper, we introduce an anisotropic Gaussian beam prestack depth migration (GB-PSDM) method for the converted PS-wave, in which the anisotropic media can be a transversely isotropic (TI) medium with a vertical or tilted symmetry axis. We present the PS-wave common shot gathers GB-PSDM imaging condition and derive the ray tracing of P- and SV-waves in two-dimensional TI media. The migration impulse responses of P- and SV-propagation modes in TI media with both vertical and tilted symmetry axes are presented. The results of numerical examples indicate that the method introduced here offers significant improvements in the quality of converted PS-wave imaging compared with an isotropic algorithm.

[1]  J. White,et al.  Measured anisotropy in Pierre Shale , 1983 .

[2]  R. James Brown,et al.  Converted-wave seismic exploration: Methods , 2002 .

[3]  D. Hale Migration by the Kirchhoff, slant stack, and Gaussian beam methods , 1992 .

[4]  B. Ursin,et al.  One-way wave-equation migration of compressional and converted waves in a VTI medium , 2010 .

[5]  N. R. Hill,et al.  Prestack Gaussian‐beam depth migration , 2001 .

[6]  Arie Verdel,et al.  Depth migration by the Gaussian beam summation method , 2010 .

[7]  V. Červený,et al.  Seismic Ray Theory , 2001, Encyclopedia of Solid Earth Geophysics.

[8]  Ru-Shan Wu,et al.  Multicomponent prestack depth migration using the elastic screen method , 2005 .

[9]  John C. Bancroft,et al.  Anisotropic reverse‐time migration for tilted TI media , 2007 .

[10]  V. Červený Seismic Rays and Ray Intensities in Inhomogeneous Anisotropic Media , 1972 .

[11]  Leon Thomsen,et al.  Converted-wave reflection seismology over inhomogeneous, anisotropic media , 1999 .

[12]  M. Nafi Toksöz,et al.  Kirchhoff migration and velocity analysis for converted and nonconverted waves in anisotropic media , 1993 .

[13]  Yu Zhang,et al.  A stable TTI reverse time migration and its implementation , 2011 .

[14]  X. Miao,et al.  Anisotropic velocity updating for converted-wave prestack time migration , 2007 .

[15]  Yun Wang,et al.  A modified EOM method for PS-wave migration , 2012 .

[16]  A stable TTI reverse time migration , 2011 .

[17]  Samuel H. Gray,et al.  Prestack Gaussian-beam depth migration in anisotropic media , 2007 .

[18]  G. Margrave,et al.  The equivalent offset method of prestack time migration , 1998 .

[19]  Zhijing Wang Seismic anisotropy in sedimentary rocks, part 2: Laboratory data , 2002 .

[20]  Yu Zhang,et al.  Converted-wave True Amplitude Prestack Kirchhoff Migration , 2005 .

[21]  G. McMechan,et al.  Scalar reverse‐time depth migration of prestack elastic seismic data , 2001 .

[22]  F. K. Levin Seismic velocities in transversely isotropic media , 1979 .

[23]  L. Thomsen Weak elastic anisotropy , 1986 .

[24]  Vlastislav Červený,et al.  Seismic ray method: Recent developments , 2007 .

[25]  N. R. Hill,et al.  Gaussian beam migration , 1990 .

[26]  T. Alkhalifah,et al.  Migration error in transversely isotropic media , 1994 .

[27]  Zhijing Wang,et al.  Seismic Anisotropy In Sedimentary Rocks , 2001 .

[28]  Jack K. Cohen,et al.  Migration error in transversely isotropic media with linear velocity variation in depth , 1993 .

[29]  Donald F. Winterstein,et al.  Velocity anisotropy terminology for geophysicists , 1990 .

[30]  G. Ball Estimation of anisotropy and anisotropic 3-D prestack depth migration, offshore Zaire , 1995 .

[31]  Tariq Alkhalifah,et al.  Gaussian beam depth migration for anisotropic media , 1995 .

[32]  D. Lawton,et al.  Image mispositioning due to dipping TI media: A physical seismic modeling study , 1999 .

[33]  Samuel H. Gray,et al.  Gaussian beam migration of common-shot records , 2005 .

[34]  Samuel H. Gray,et al.  True-amplitude Gaussian-beam migration , 2009 .

[35]  M. Baan,et al.  Seismic anisotropy in exploration and reservoir characterization: An overview , 2010 .

[36]  Hengchang Dai,et al.  Converted-wave imaging in anisotropic media : theory and case studies , 2007 .

[37]  Robert R. Kendall,et al.  Subsalt Imaging Using Prestack Depth Migration of Converted Waves: Mahogany Field, Gulf of Mexico , 1998 .

[38]  D. Hale Computational aspects of Gaussian beam migration , 1992 .

[39]  M. Lou,et al.  Converted-wave Prestack Time Migration For Isotropic And Anisotropic Media , 2002 .

[40]  S. Crampin,et al.  Seismic anisotropy - the state of the art , 1984 .

[41]  Don C. Lawton,et al.  Imaging structures below dipping TI media , 1999 .

[42]  C. Wapenaar,et al.  Depth migration of shot records in heterogeneous, transversely isotropic media using optimum explicit operators , 2001 .

[43]  M. Popov A new method of computation of wave fields using Gaussian beams , 1982 .

[44]  Mrinal K. Sen,et al.  Traveltime calculation and prestack depth migration in tilted transversely isotropic media , 2004 .

[45]  R. James Brown,et al.  Converted‐wave seismic exploration: Applications , 2003 .

[46]  B. Han Two prestack converted‐wave migration algorithms for vertical transverse isotropy , 2000 .

[47]  Robert L. Nowack,et al.  Calculation of Synthetic Seismograms with Gaussian Beams , 2003 .

[48]  A. Hanyga Gaussian beams in anisotropic elastic media , 1986 .

[49]  Yang Liu,et al.  Anisotropic converted wave amplitude-preserving prestack time migration by the pseudo-offset method , 2008 .

[50]  M. M. Popov,et al.  Computation of wave fields in inhomogeneous media — Gaussian beam approach , 1982 .