On the inverse power laws for accelerated random fatigue testing

This paper addresses the usage of inverse power laws in accelerated fatigue testing under wide-band Gaussian random loading. The aim is not at predicting an absolute value of fatigue life but assessing the fatigue damage relative accumulation. The widely accepted inverse power scaling laws in fatigue damage assessment is discussed, reviewing the engineering standards and pointing out their inherent limitations. A physically consistent general scaling law is obtained by rigorous mathematical analysis in the framework of random vibration theory and the rules of safe-life fatigue analysis. Simplifications of the general scaling rule are presented, highlighting conditions under which the current standard practice could provide a correct an acceptable estimation of the relative fatigue damage accumulation.

[1]  O. Basquin The exponential law of endurance tests , 1910 .

[2]  Turan Dirlik,et al.  Application of computers in fatigue analysis , 1985 .

[3]  J. Schijve,et al.  Statistical distribution functions and fatigue of structures , 2005 .

[4]  K. S. Kim,et al.  fatigue analysis under variable amplitude loading using an energy parameter , 2003 .

[5]  Alfred M. Freudenthal,et al.  On Stress Interaction in Fatigue and a Cumulative Damage Rule , 1959 .

[6]  A. Dasgupta,et al.  A fundamental overview of accelerated-testing analytic models , 1998, Annual Reliability and Maintainability Symposium. 1998 Proceedings. International Symposium on Product Quality and Integrity.

[7]  Thomas R. Chase,et al.  Multiaxial cycle counting for critical plane methods , 2003 .

[8]  R. Tovo Cycle distribution and fatigue damage under broad-band random loading , 2002 .

[9]  L. Coffin,et al.  A Study of the Effects of Cyclic Thermal Stresses on a Ductile Metal , 1954, Journal of Fluids Engineering.

[10]  D Play,et al.  Design of welded structures working under random loading , 2002 .

[11]  S. Winterstein,et al.  Random Fatigue: From Data to Theory , 1992 .

[12]  Mauro Filippini,et al.  A comparative study of multiaxial high-cycle fatigue criteria for metals , 1997 .

[13]  Chun H. Wang,et al.  Life Prediction Techniques for Variable Amplitude Multiaxial Fatigue—Part 1: Theories , 1996 .

[14]  Henry Caruso An overview of environmental reliability testing , 1996, Proceedings of 1996 Annual Reliability and Maintainability Symposium.

[15]  I. Rychlik A new definition of the rainflow cycle counting method , 1987 .

[16]  Bernardo Zuccarello,et al.  Fatigue life prediction under wide band random loading , 2004 .

[17]  S. Clevenson,et al.  Fatigue life under random loading for several power spectral shapes , 1967 .

[18]  H. Banbi,et al.  Cumulative fatigue damage of drilling pipes , 1976 .

[19]  Charles R. Farrar,et al.  A review of methods for developing accelerated testing criteria , 1999 .

[20]  D. Benasciutti,et al.  Spectral methods for lifetime prediction under wide-band stationary random processes , 2005 .

[21]  Hank Caruso,et al.  A Fundamental Overview of Accelerated Testing Analytical Models , 1998 .

[22]  S. Manson Fatigue: A complex subject—Some simple approximations , 1965 .

[23]  André Preumont,et al.  Spectral methods for multiaxial random fatigue analysis of metallic structures , 2000 .

[24]  Henning Agerskov,et al.  Fatigue in steel structures under random loading , 2000 .

[25]  Leonard Meirovitch,et al.  Elements Of Vibration Analysis , 1986 .

[26]  Shahram Sarkani,et al.  Fatigue of welded steel joints under wideband loadings , 1996 .

[27]  Paul H. Wirsching,et al.  Probabilistic Design for Random Fatigue Loads , 1973 .

[28]  Ali Fatemi,et al.  Cumulative fatigue damage and life prediction theories: a survey of the state of the art for homogeneous materials , 1998 .