Spectroscopy of spin-split Andreev levels in a quantum dot with superconducting leads

We use a hybrid superconductor-semiconductor transmon device to perform spectroscopy of a quantum dot Josephson junction tuned to be in a spin-1/2 ground state with an unpaired quasiparticle. Due to spin-orbit coupling, we resolve two flux-sensitive branches in the transmon spectrum, depending on the spin of the quasi-particle. A finite magnetic field shifts the two branches in energy, favoring one spin state and resulting in the anomalous Josephson effect. We demonstrate the excitation of the direct spin-flip transition using all-electrical control. Manipulation and control of the spin-flip transition enable the future implementation of charging energy protected Andreev spin qubits. observed experimentally. Our starting point is an extension of the single-impurity Anderson model (SIAM) for a quantum dot (QD) attached to two superconducting the magnitude of the applied magnetic field, r and measure the evolution of transmon and spin-flip spectroscopy while varying in steps of two For each we determine the for the applied field is perpendicular to the spin-splitting to the theory model. The these to the spin-splitting term.

[1]  D. Loss,et al.  Coupled superconducting spin qubits with spin-orbit interaction , 2022, Physical Review B.

[2]  E. Bakkers,et al.  Variable and Orbital-Dependent Spin-Orbit Field Orientations in an InSb Double Quantum Dot Characterized via Dispersive Gate Sensing , 2022, Physical Review Applied.

[3]  C. K. Andersen,et al.  Singlet-Doublet Transitions of a Quantum Dot Josephson Junction Detected in a Transmon Circuit , 2022, PRX Quantum.

[4]  V. Fatemi,et al.  Coherent manipulation of an Andreev spin qubit , 2021, Science.

[5]  V. Fatemi,et al.  Spin coherent manipulation in Josephson weak links , 2020, Physical Review Research.

[6]  R. Aguado A perspective on semiconductor-based superconducting qubits , 2020, Applied Physics Letters.

[7]  C. Urbina,et al.  Circuit-QED with phase-biased Josephson weak links , 2020, 2010.00430.

[8]  L. Kouwenhoven,et al.  Observation of Vanishing Charge Dispersion of a Nearly Open Superconducting Island. , 2019, Physical review letters.

[9]  C. Marcus,et al.  Controlled dc Monitoring of a Superconducting Qubit. , 2019, Physical review letters.

[10]  M. Spiropulu,et al.  Perspectives on quantum transduction , 2019, Quantum Science and Technology.

[11]  Aaas News,et al.  Book Reviews , 1893, Buffalo Medical and Surgical Journal.

[12]  V. Fatemi,et al.  Continuous monitoring of a trapped superconducting spin , 2019, 1908.02800.

[13]  T. Novotný,et al.  Practical Guide to Quantum Phase Transitions in Quantum-Dot-Based Tunable Josephson Junctions , 2019, Physical Review Applied.

[14]  W. Pfaff,et al.  Revealing charge-tunneling processes between a quantum dot and a superconducting island through gate sensing , 2019, Physical Review B.

[15]  L. Frunzio,et al.  Direct Dispersive Monitoring of Charge Parity in Offset-Charge-Sensitive Transmons , 2019, Physical Review Applied.

[16]  C. Marcus,et al.  Current-phase relations of InAs nanowire Josephson junctions: From interacting to multimode regimes , 2019, Physical Review B.

[17]  C. Urbina,et al.  Spin-Orbit Splitting of Andreev States Revealed by Microwave Spectroscopy , 2018, Physical Review X.

[18]  V. Meden The Anderson–Josephson quantum dot—a theory perspective , 2018, Journal of physics. Condensed matter : an Institute of Physics journal.

[19]  J. Sauls Andreev bound states and their signatures , 2018, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[20]  A. Yeyati,et al.  Andreev spin qubits in multichannel Rashba nanowires , 2017, 1707.04273.

[21]  M. Troyer,et al.  Orbital Contributions to the Electron g Factor in Semiconductor Nanowires. , 2017, Physical review letters.

[22]  C. Marcus,et al.  Anharmonicity of a superconducting qubit with a few-mode Josephson junction , 2017, 1703.05643.

[23]  C. Marcus,et al.  Current–phase relations of few-mode InAs nanowire Josephson junctions , 2017, Nature Physics.

[24]  E. Bakkers,et al.  Josephson ϕ0-junction in nanowire quantum dots , 2015, Nature Physics.

[25]  Jacob Linder,et al.  Superconducting spintronics , 2015, Nature Physics.

[26]  C. Marcus,et al.  Epitaxy of semiconductor-superconductor nanowires. , 2014, Nature materials.

[27]  R. Egger,et al.  Anomalous Josephson current, incipient time-reversal symmetry breaking, and Majorana bound states in interacting multilevel dots , 2013, 1305.3816.

[28]  C. Marcus,et al.  Tunneling spectroscopy of quasiparticle bound states in a spinful Josephson junction. , 2012, Physical review letters.

[29]  E. Bakkers,et al.  Fast spin-orbit qubit in an indium antimonide nanowire. , 2012, Physical review letters.

[30]  D. Liang,et al.  Strong tuning of Rashba spin-orbit interaction in single InAs nanowires. , 2012, Nano letters.

[31]  D. J. Luitz,et al.  Understanding the Josephson current through a Kondo-correlated quantum dot. , 2012, Physical review letters.

[32]  A. Levy Yeyati,et al.  Josephson and Andreev transport through quantum dots , 2011, 1111.4939.

[33]  J. Petta,et al.  Field tuning the g factor in InAs nanowire double quantum dots. , 2011, Physical review letters.

[34]  E. Bakkers,et al.  Spin–orbit qubit in a semiconductor nanowire , 2010, Nature.

[35]  Lev S. Bishop,et al.  CIRCUIT QUANTUM ELECTRODYNAMICS , 2010, Mesoscopic Physics meets Quantum Engineering.

[36]  Y. Nazarov,et al.  Theoretical proposal for superconducting spin qubits , 2009, 0912.3910.

[37]  T. Martin,et al.  Anomalous Josephson current through a spin-orbit coupled quantum dot. , 2009, Physical review letters.

[38]  Y. Nazarov,et al.  Pauli spin blockade in the presence of strong spin-orbit coupling , 2009, 0905.1818.

[39]  P. Simon,et al.  Self-consistent description of Andreev bound states in Josephson quantum dot devices , 2009, 0902.1111.

[40]  C. Karrasch,et al.  Supercurrent and multiple singlet-doublet phase transitions of a quantum dot Josephson junction inside an Aharonov-Bohm ring , 2008, 0810.3847.

[41]  C. Schönenberger,et al.  Giant fluctuations and gate control of the g-factor in InAs nanowire quantum dots. , 2008, Nano letters.

[42]  C. Karrasch,et al.  Josephson current through a single Anderson impurity coupled to BCS leads , 2007, 0711.0671.

[43]  C. Beenakker,et al.  Splitting of Andreev levels in a Josephson junction by spin-orbit coupling , 2007, 0709.3054.

[44]  L. Vandersypen,et al.  Supporting Online Material for Coherent Control of a Single Electron Spin with Electric Fields Materials and Methods Som Text Figs. S1 and S2 References , 2022 .

[45]  S. Girvin,et al.  Charge-insensitive qubit design derived from the Cooper pair box , 2007, cond-mat/0703002.

[46]  D. Loss,et al.  Direct measurement of the spin-orbit interaction in a two-electron InAs nanowire quantum dot. , 2007, Physical review letters.

[47]  E. Bakkers,et al.  Supercurrent reversal in quantum dots , 2006, Nature.

[48]  A. Hewson,et al.  Kondo effect in asymmetric Josephson couplings through a quantum dot , 2006, cond-mat/0606581.

[49]  A. Sørensen,et al.  Spin-orbit mediated control of spin qubits. , 2006, Physical review letters.

[50]  D. Loss,et al.  Electric-dipole-induced spin resonance in quantum dots , 2006, cond-mat/0601674.

[51]  A. Hewson,et al.  Quantum Phase Transition in a Minimal Model for the Kondo Effect in a Josephson Junction , 2004, cond-mat/0406298.

[52]  S. Girvin,et al.  Cavity quantum electrodynamics for superconducting electrical circuits: An architecture for quantum computation , 2004, cond-mat/0402216.

[53]  Mahn‐Soo Choi,et al.  Kondo effect and Josephson current through a quantum dot between two superconductors , 2003, cond-mat/0312271.

[54]  E. Rashba,et al.  Orbital mechanisms of electron-spin manipulation by an electric field. , 2003, Physical review letters.

[55]  A. Yeyati,et al.  Josephson current through a correlated quantum level: Andreev states and π junction behavior , 2002, cond-mat/0212375.

[56]  N. Chtchelkatchev,et al.  Andreev quantum dots for spin manipulation. , 2002, Physical review letters.

[57]  A. Yeyati,et al.  Controlled dephasing of Andreev states in superconducting quantum point contacts , 2001, cond-mat/0108351.

[58]  Y. Ohashi,et al.  Numerical Renormalization Group Studies on Single Impurity Anderson Model in Superconductivity: A Unified Treatment of Magnetic, Nonmagnetic Impurities, and Resonance Scattering , 2000 .

[59]  A. Zagoskin,et al.  Andreev scattering and Josephson current in a one-dimensional electron liquid , 2000, cond-mat/0001375.

[60]  A. Rozhkov,et al.  Interacting-impurity Josephson junction: Variational wave functions and slave-boson mean-field theory , 2000, cond-mat/0001062.

[61]  E. Ivchenko,et al.  Electron g factor in one- and zero-dimensional semiconductor nanostructures , 1998 .

[62]  C. Beenakker,et al.  Universal limit of critical-current fluctuations in mesoscopic Josephson junctions. , 1991, Physical review letters.

[63]  Kivelson,et al.  Negative local superfluid densities: The difference between dirty superconductors and dirty Bose liquids. , 1991, Physical review. B, Condensed matter.

[64]  L. Glazman,et al.  Resonant Josephson current through Kondo impurities in a tunnel barrier , 1989 .