On arbitrarily regular conforming virtual element methods for elliptic partial differential equations

The Virtual Element Method (VEM) is a very effective framework to design numerical approximations with high global regularity to the solutions of elliptic partial differential equations. In this paper, we review the construction of such approximations for an elliptic problem of order p1 using conforming, finite dimensional subspaces of H p2 (Ω), where p1 and p2 are two integer numbers such that p2 ≥ p1 ≥ 1 andΩ ∈ R2 is the computational domain. An abstract convergence result is presented in a suitably defined energy norm. The space formulation and major aspects such as the choice and unisolvence of the degrees of freedom are discussed, also providing specific examples corresponding to various practical cases of high global regularity. Finally, the construction of the “enhanced” formulation of the virtual element spaces is also discussed in details with a proof that the dimension of the “regular” and “enhanced” spaces is the same and that the virtual element functions in both spaces can be described by the same choice of the degrees of freedom.

[1]  Franco Dassi,et al.  A C1 Virtual Element Method on polyhedral meshes , 2018, Comput. Math. Appl..

[2]  L. Donatella Marini,et al.  Virtual Element Method for fourth order problems: L2-estimates , 2016, Comput. Math. Appl..

[3]  Meng Li,et al.  Conforming and nonconforming VEMs for the fourth-order reaction–subdiffusion equation: a unified framework , 2021 .

[4]  Heng Chi,et al.  On nonconvex meshes for elastodynamics using virtual element methods with explicit time integration , 2019, Computer Methods in Applied Mechanics and Engineering.

[5]  Gianmarco Manzini,et al.  The Virtual Element Method for Eigenvalue Problems with Potential Terms on Polytopic Meshes , 2018, Applications of Mathematics.

[6]  Shangyou Zhang A family of differentiable finite elements on simplicial grids in four space dimensions , 2016 .

[7]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[8]  G. Manzini,et al.  Extended virtual element method for the Laplace problem with singularities and discontinuities , 2019, Computer Methods in Applied Mechanics and Engineering.

[9]  Lourenco Beirao da Veiga,et al.  Stability Analysis for the Virtual Element Method , 2016, 1607.05988.

[10]  L. Beirao da Veiga,et al.  Divergence free Virtual Elements for the Stokes problem on polygonal meshes , 2015, 1510.01655.

[11]  Alessandro Russo,et al.  Mixed Virtual Element Methods for general second order elliptic problems on polygonal meshes , 2014, 1506.07328.

[12]  David Mora,et al.  A virtual element method for the transmission eigenvalue problem , 2018, Mathematical Models and Methods in Applied Sciences.

[13]  Shangyou Zhang A family of 3D continuously differentiable finite elements on tetrahedral grids , 2009 .

[14]  Ilaria Perugia,et al.  A Plane Wave Virtual Element Method for the Helmholtz Problem , 2015, 1505.04965.

[15]  Glaucio H. Paulino,et al.  Virtual element method (VEM)-based topology optimization: an integrated framework , 2019, Structural and Multidisciplinary Optimization.

[16]  David Mora,et al.  A virtual element method for the vibration problem of Kirchhoff plates , 2017, ESAIM: Mathematical Modelling and Numerical Analysis.

[17]  Bo Dong,et al.  A superconvergent LDG-hybridizable Galerkin method for second-order elliptic problems , 2008, Math. Comput..

[18]  Kyoungsoo Park,et al.  Numerical recipes for elastodynamic virtual element methods with explicit time integration , 2019, International Journal for Numerical Methods in Engineering.

[19]  K. Lipnikov,et al.  The nonconforming virtual element method , 2014, 1405.3741.

[20]  Stefano Berrone,et al.  Anisotropic a posteriori error estimate for the Virtual Element Method , 2020, IMA Journal of Numerical Analysis.

[21]  Gianmarco Manzini,et al.  Residual a posteriori error estimation for the Virtual Element Method for elliptic problems , 2015 .

[22]  P. Houston,et al.  hp-Version Discontinuous Galerkin Methods on Polygonal and Polyhedral Meshes , 2017 .

[23]  David Mora,et al.  Virtual element for the buckling problem of Kirchhoff–Love plates , 2020 .

[24]  L. Beirao da Veiga,et al.  H(div) and H(curl)-conforming VEM , 2014, 1407.6822.

[25]  D. W. Scharpf,et al.  The TUBA Family of Plate Elements for the Matrix Displacement Method , 1968, The Aeronautical Journal (1968).

[26]  P. F. Antonietti,et al.  A multigrid algorithm for the $p$-version of the Virtual Element Method , 2017, 1703.02285.

[27]  Simone Scacchi,et al.  A C1 Virtual Element Method for the Cahn-Hilliard Equation with Polygonal Meshes , 2015, SIAM J. Numer. Anal..

[28]  Jianguo Huang,et al.  Some error analysis on virtual element methods , 2017, 1708.08558.

[29]  Lourenço Beirão da Veiga,et al.  Virtual elements for a shear-deflection formulation of Reissner-Mindlin plates , 2017, Math. Comput..

[30]  Gianmarco Manzini,et al.  Mimetic finite difference method , 2014, J. Comput. Phys..

[31]  P. Antonietti,et al.  The arbitrary‐order virtual element method for linear elastodynamics models: convergence, stability and dispersion‐dissipation analysis , 2020, International Journal for Numerical Methods in Engineering.

[32]  Marco Verani,et al.  The Virtual Element Method for a Minimal Surface Problem , 2019, ArXiv.

[33]  F. Brezzi,et al.  Basic principles of Virtual Element Methods , 2013 .

[34]  Matteo Bruggi,et al.  On the virtual element method for topology optimization on polygonal meshes: A numerical study , 2016, Comput. Math. Appl..

[35]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .

[36]  Xuehai Huang,et al.  Nonconforming Virtual Element Method for 2m-th Order Partial Differential Equations in Rn with m>n , 2019, ArXiv.

[37]  Stefano Berrone,et al.  The Virtual Element Method for Underground Flow Simulations in Fractured Media , 2016 .

[38]  S. de Miranda,et al.  A stress/displacement Virtual Element method for plane elasticity problems , 2017, 1702.01702.

[39]  Jun Hu,et al.  A Construction of $C^r$ Conforming Finite Element Spaces in Any Dimension , 2021, ArXiv.

[40]  L. Mascotto,et al.  A nonconforming Trefftz virtual element method for the Helmholtz problem: Numerical aspects , 2018, Computer Methods in Applied Mechanics and Engineering.

[41]  N. Sukumar,et al.  Conforming polygonal finite elements , 2004 .

[42]  Richard S. Falk,et al.  Basic principles of mixed Virtual Element Methods , 2014 .

[43]  Jérôme Droniou,et al.  The Hybrid High-Order Method for Polytopal Meshes , 2020 .

[44]  David Mora,et al.  A C1 virtual element method for the stationary quasi-geostrophic equations of the ocean , 2021, Comput. Math. Appl..

[45]  Ahmed Alsaedi,et al.  Equivalent projectors for virtual element methods , 2013, Comput. Math. Appl..

[46]  F. Gazzola,et al.  Polyharmonic Boundary Value Problems , 2010 .

[47]  Paola F. Antonietti,et al.  The conforming virtual element method for polyharmonic problems , 2018, Comput. Math. Appl..

[48]  Stefano de Miranda,et al.  A family of virtual element methods for plane elasticity problems based on the Hellinger–Reissner principle , 2017, Computer Methods in Applied Mechanics and Engineering.

[49]  Franco Brezzi,et al.  Virtual Element Methods for plate bending problems , 2013 .

[50]  Stefano Giani,et al.  hp-Version Composite Discontinuous Galerkin Methods for Elliptic Problems on Complicated Domains , 2013, SIAM J. Sci. Comput..

[51]  R. Rannacher,et al.  On the boundary value problem of the biharmonic operator on domains with angular corners , 1980 .

[52]  L. B. D. Veiga,et al.  A virtual element method with arbitrary regularity , 2014 .

[53]  Giuseppe Vacca,et al.  Virtual Elements for the Navier-Stokes Problem on Polygonal Meshes , 2017, SIAM J. Numer. Anal..

[54]  C. Lovadina,et al.  A virtual element method for the von Kármán equations , 2021, ESAIM: Mathematical Modelling and Numerical Analysis.

[55]  Ilaria Perugia,et al.  A nonconforming Trefftz virtual element method for the Helmholtz problem , 2018, Mathematical Models and Methods in Applied Sciences.

[56]  Peter Wriggers,et al.  A virtual element method for contact , 2016 .

[57]  L. Beirao da Veiga,et al.  Mixed Virtual Element Methods for general second order elliptic problems on polygonal meshes , 2014 .

[58]  Peter Wriggers,et al.  Phase-field modeling of brittle fracture using an efficient virtual element scheme , 2018, Computer Methods in Applied Mechanics and Engineering.

[59]  K. Bell A refined triangular plate bending finite element , 1969 .

[60]  Susanne C. Brenner,et al.  Virtual enriching operators , 2019, Calcolo.