A Multivariate Distribution with Weibull Connections

SUMMARY A simple form of multivariate distribution is defined which, for certain parameter values, has Weibull marginals. The distribution has a single parameter governing association between the variates, which may be positive, negative or zero. The simple forms for marginal and conditional distributions, hazard functions and densities make it attractive for practical application and interpretation.

[1]  William Feller,et al.  An Introduction to Probability Theory and Its Applications , 1951 .

[2]  M Gail,et al.  A review and critique of some models used in competing risk analysis. , 1975, Biometrics.

[3]  S. Bennett,et al.  Log‐Logistic Regression Models for Survival Data , 1983 .

[4]  Pike Mc,et al.  A method of analysis of a certain class of experiments in carcinogenesis. , 1966 .

[5]  Martin Crowder,et al.  A Distributional Model for Repeated Failure Time Measurements , 1985 .

[6]  D. Clayton A model for association in bivariate life tables and its application in epidemiological studies of familial tendency in chronic disease incidence , 1978 .

[7]  W. R. Buckland,et al.  Distributions in Statistics: Continuous Multivariate Distributions , 1973 .

[8]  E. Gumbel Bivariate Exponential Distributions , 1960 .

[9]  E. Lehmann Some Concepts of Dependence , 1966 .

[10]  R. Davies Hypothesis testing when a nuisance parameter is present only under the alternative , 1977 .

[11]  P. Lee,et al.  Weibull distributions for continuous-carcinogenesis experiments. , 1973, Biometrics.

[12]  P. Hougaard A class of multivanate failure time distributions , 1986 .

[13]  I. Olkin,et al.  A Multivariate Exponential Distribution , 1967 .

[14]  J. D. T. Oliveira,et al.  The Asymptotic Theory of Extreme Order Statistics , 1979 .

[15]  M. Rosenblatt Remarks on a Multivariate Transformation , 1952 .

[16]  Moshe Shaked,et al.  A general theory of some positive dependence notions , 1982 .

[17]  D. Cox,et al.  Analysis of Survival Data. , 1985 .

[18]  D. Clayton,et al.  Multivariate generalizations of the proportional hazards model , 1985 .

[19]  Roger Fletcher,et al.  A Rapidly Convergent Descent Method for Minimization , 1963, Comput. J..

[20]  J. Kalbfleisch,et al.  The Statistical Analysis of Failure Time Data , 1980 .