Improving map generalisation with new pruning heuristics

Many automated generalisation methods are based on local search optimisation techniques: Starting from an initial state of the data, one or several new child states are produced using some transformation algorithms. These child states are then evaluated according to the final data requirements, and possibly used as new candidate state to transform. According to this approach, the generalisation process can be seen as a walk in a tree, each node representing a state of the data, and each link a transformation. In such an approach, the tree exploration heuristic has a great impact on the final result: Depending on which parts of the tree are either explored or pruned, the final result is different, and the process more or less computationally prohibitive. This article investigates the importance of exploration heuristic choice in automated generalisation. Different pruning criteria are proposed and tested on real generalisation cases. Recommendations on how to choose the pruning criterion depending on the need are provided.

[1]  P. Højholt Solving Space Conflicts in Map Generalization: Using a Finite Element Method , 2000 .

[2]  Ij Dowman Semantic modelling for the acquisition of topographic information from images and maps. Edited by F"rstner, W.; Pl_mer, , 1998 .

[3]  I. D. Wilson,et al.  Reducing Graphic Conflict In Scale Reduced Maps Using A Genetic Algorithm , 2003 .

[4]  Monika Sester GENERALIZATION BASED ON LEAST SQUARES ADJUSTMENT , 2000 .

[5]  W. Mackaness,et al.  The application of agents in automated map generalization , 1999 .

[6]  A. Land,et al.  An Automatic Method for Solving Discrete Programming Problems , 1960, 50 Years of Integer Programming.

[7]  Patrick Taillandier,et al.  Révision automatique des connaissances guidant l'exploration informée d'arbres d'états : application au contexte de la généralisation de données géographiques. (Automatic revision of knowledge guiding informed search tree exploration : application to the context of geographic data generalisation) , 2008 .

[8]  Patrick Taillandier,et al.  Using Belief Theory to Diagnose Control Knowledge Quality: Application to Cartographic Generalisation , 2009, 2009 IEEE-RIVF International Conference on Computing and Communication Technologies.

[9]  Christopher B. Jones,et al.  Conflict Reduction in Map Generalization Using Iterative Improvement , 1998, GeoInformatica.

[10]  Anne Ruas,et al.  Strategies for Urban Map Generization , 1997 .

[11]  A. Ruas Modèle de généralisation de données géographiques à base de contraintes et d'autonomie , 1999 .

[12]  Tapani Sarjakoski,et al.  Simultaneous Graphic Generalization of Vector Data Sets , 2002, GeoInformatica.

[13]  Robert Weibel,et al.  A review and conceptual framework of automated map generalization , 1988, Int. J. Geogr. Inf. Sci..

[14]  Ailsa H. Land,et al.  An Automatic Method of Solving Discrete Programming Problems , 1960 .

[15]  Julie A. Adams,et al.  Multiagent Systems: A Modern Approach to Distributed Artificial Intelligence , 2001, AI Mag..

[16]  Patrick Taillandier,et al.  Automatic revision of the control knowledge used by trial and error methods: Application to cartographic generalisation , 2011, Appl. Soft Comput..

[17]  Robert B McMaster,et al.  Generalization in Digital Cartography , 2008 .