A framework for development and application of hydrological models

Abstract. Many existing hydrological modelling procedures do not make best use of available information, resulting in non-minimal uncertainties in model structure and parameters, and a lack of detailed information regarding model behaviour. A framework is required that balances the level of model complexity supported by the available data with the level of performance suitable for the desired application. Tools are needed that make optimal use of the information available in the data to identify model structure and parameters, and that allow a detailed analysis of model behaviour. This should result in appropriate levels of model complexity as a function of available data, hydrological system characteristics and modelling purpose. This paper introduces an analytical framework to achieve this, and tools to use within it, based on a multi-objective approach to model calibration and analysis. The utility of the framework is demonstrated with an example from the field of rainfall-runoff modelling. Keywords: hydrological modelling, multi-objective calibration, model complexity, parameter identifiability

[1]  John A. Nelder,et al.  A Simplex Method for Function Minimization , 1965, Comput. J..

[2]  Keith Beven,et al.  Changing ideas in hydrology — The case of physically-based models , 1989 .

[3]  R. J. Moore,et al.  Real-Time Flood Forecasting Systems: Perspectives and Prospects , 1999 .

[4]  L. Brazil,et al.  Calibration Procedures Use with the National Weather Service River Forecast System , 1980 .

[5]  K. Beven,et al.  A physically based, variable contributing area model of basin hydrology , 1979 .

[6]  Keith Beven,et al.  The future of distributed models: model calibration and uncertainty prediction. , 1992 .

[7]  Vijay P. Singh,et al.  A toolkit for the development and application of parsimonious hydrological models. , 2002 .

[8]  S. Sorooshian,et al.  Shuffled complex evolution approach for effective and efficient global minimization , 1993 .

[9]  K. Bevenb,et al.  Use of spatially distributed water table observations to constrain uncertainty in a rainfall – runoff model , 1998 .

[10]  M. B. Beck,et al.  The identification of conceptual hydrological models for surface water acidification , 1986 .

[11]  Claudio Margottini,et al.  Floods and Landslides: Integrated Risk Assessment , 1999 .

[12]  K. Beven,et al.  Shenandoah Watershed Study: Calibration of a Topography‐Based, Variable Contributing Area Hydrological Model to a Small Forested Catchment , 1985 .

[13]  L. Darrell Whitley,et al.  The GENITOR Algorithm and Selection Pressure: Why Rank-Based Allocation of Reproductive Trials is Best , 1989, ICGA.

[14]  Luis A. Bastidas,et al.  Multicriteria parameter estimation for models of stream chemical composition , 2002 .

[15]  Anthony J. Jakeman,et al.  Performance of conceptual rainfall‐runoff models in low‐yielding ephemeral catchments , 1997 .

[16]  M. B. Beck,et al.  The Identifiability of Conceptual Hydrochemical Models , 1990 .

[17]  S. Sorooshian,et al.  Effective and efficient global optimization for conceptual rainfall‐runoff models , 1992 .

[18]  K. Beven,et al.  Bayesian Estimation of Uncertainty in Runoff Prediction and the Value of Data: An Application of the GLUE Approach , 1996 .

[19]  L. Bastidas,et al.  Parameter estimation for hydrometeorological models using multi-criteria methods , 1998 .

[20]  R. Moore The probability-distributed principle and runoff production at point and basin scales , 1985 .

[21]  George Kuczera,et al.  Assessment of hydrologic parameter uncertainty and the worth of multiresponse data , 1998 .

[22]  K. Beven,et al.  Progress and directions in rainfall-runoff modelling , 1993 .

[23]  Soroosh Sorooshian,et al.  Toward improved streamflow forecasts: value of semidistributed modeling , 2001 .

[24]  Peter C. Young,et al.  Recursive Estimation and Time Series Analysis , 1984 .

[25]  Soroosh Sorooshian,et al.  Sensitivity analysis of a land surface scheme using multicriteria methods , 1999 .

[26]  Soroosh Sorooshian,et al.  Optimal use of the SCE-UA global optimization method for calibrating watershed models , 1994 .

[27]  Jan Seibert,et al.  Conceptual Runoff Models -- Fiction or Representation of Reality , 1999 .

[28]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[29]  A. Jakeman,et al.  How much complexity is warranted in a rainfall‐runoff model? , 1993 .

[30]  Soroosh Sorooshian,et al.  Toward improved calibration of hydrologic models: Combining the strengths of manual and automatic methods , 2000 .

[31]  W. J. Shuttleworth,et al.  Parameter estimation of a land surface scheme using multicriteria methods , 1999 .

[32]  Soroosh Sorooshian,et al.  Toward improved calibration of hydrologic models: Multiple and noncommensurable measures of information , 1998 .

[33]  S. Sorooshian,et al.  Evaluation of Maximum Likelihood Parameter estimation techniques for conceptual rainfall‐runoff models: Influence of calibration data variability and length on model credibility , 1983 .

[34]  Sarah M. Dunn Imposing constraints on parameter values of a conceptual hydrological model using baseflow response , 1999 .

[35]  Soroosh Sorooshian,et al.  The relationship between data and the precision of parameter estimates of hydrologic models , 1985 .

[36]  P. Young,et al.  Simplicity out of complexity in environmental modelling: Occam's razor revisited. , 1996 .

[37]  R. Spear Eutrophication in peel inlet—II. Identification of critical uncertainties via generalized sensitivity analysis , 1980 .

[38]  Soroosh Sorooshian,et al.  Multi-objective global optimization for hydrologic models , 1998 .