Lightweight lattice Boltzmann.

A regularized version of the lattice Boltzmann method for efficient simulation of soft materials is introduced. Unlike standard approaches, this method reconstructs the distribution functions from available hydrodynamic variables (density, momentum, and pressure tensor) without storing the full set of discrete populations. This scheme shows significantly lower memory requirements and data access costs. A series of benchmark tests of relevance to soft matter, such as collisions of fluid droplets, is discussed to validate the method. The results can be of particular interest for high-performance simulations of soft matter systems on future exascale computers.

[1]  Moritz Lehmann Esoteric Pull and Esoteric Push: Two Simple In-Place Streaming Schemes for the Lattice Boltzmann Method on GPUs , 2022, Comput..

[2]  S. Succi,et al.  Stochastic Jetting and Dripping in Confined Soft Granular Flows. , 2022, Physical review letters.

[3]  S. Succi,et al.  LBcuda: A high-performance CUDA port of LBsoft for simulation of colloidal systems , 2021, Comput. Phys. Commun..

[4]  S. Succi,et al.  Translocation Dynamics of High-Internal Phase Double Emulsions in Narrow Channels , 2021, Langmuir : the ACS journal of surfaces and colloids.

[5]  M. Porfiri,et al.  Extreme flow simulations reveal skeletal adaptations of deep-sea sponges , 2021, Nature.

[6]  S. Succi,et al.  Wet to dry self-transitions in dense emulsions: From order to disorder and back , 2021, Physical Review Fluids.

[7]  L. Rezzolla,et al.  Beyond moments: relativistic lattice Boltzmann methods for radiative transport in computational astrophysics , 2020, 2007.05718.

[8]  Sauro Succi,et al.  Modeling pattern formation in soft flowing crystals , 2020, Physical Review Fluids.

[9]  Adriano Tiribocchi,et al.  Toward exascale design of soft mesoscale materials , 2020, J. Comput. Sci..

[10]  Massimo Bernaschi,et al.  LBsoft: A parallel open-source software for simulation of colloidal systems , 2020, Comput. Phys. Commun..

[11]  S. Succi,et al.  Mesoscale modelling of near-contact interactions for complex flowing interfaces , 2019, Journal of Fluid Mechanics.

[12]  Qing Li,et al.  Improved three-dimensional color-gradient lattice Boltzmann model for immiscible two-phase flows. , 2019, Physical review. E.

[13]  Massimo Bernaschi,et al.  Towards Exascale Lattice Boltzmann computing , 2019, Computers & Fluids.

[14]  Chi-Wang Shu,et al.  Highly accurate simplified lattice Boltzmann method , 2018, Physics of Fluids.

[15]  S. Succi,et al.  Mesoscale modelling of soft flowing crystals , 2018, Philosophical Transactions of the Royal Society A.

[16]  Martin Geier,et al.  Esoteric Twist: An Efficient in-Place Streaming Algorithmus for the Lattice Boltzmann Method on Massively Parallel Hardware , 2017, Comput..

[17]  Raffaele Tripiccione,et al.  Optimization of lattice Boltzmann simulations on heterogeneous computers , 2017, Int. J. High Perform. Comput. Appl..

[18]  Orestis Malaspinas,et al.  Generalized three-dimensional lattice Boltzmann color-gradient method for immiscible two-phase pore-scale imbibition and drainage in porous media. , 2017, Physical review. E.

[19]  Chang Shu,et al.  A Simplified Lattice Boltzmann Method without Evolution of Distribution Function , 2017 .

[20]  Chang Shu,et al.  A simplified thermal lattice Boltzmann method without evolution of distribution functions , 2017 .

[21]  A. Gat,et al.  Elastic deformations driven by non-uniform lubrication flows , 2016, Journal of Fluid Mechanics.

[22]  Santosh Ansumali,et al.  Crystallographic Lattice Boltzmann Method , 2016, Scientific Reports.

[23]  Edo S. Boek,et al.  Enhancing Computational Precision for Lattice Boltzmann Schemes in Porous Media Flows , 2016, Comput..

[24]  Shamoon Jamshed,et al.  Using HPC for Computational Fluid Dynamics: A Guide to High Performance Computing for CFD Engineers , 2015 .

[25]  Qinjun Kang,et al.  Three-dimensional lattice Boltzmann model for immiscible two-phase flow simulations. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[26]  Stuart D. C. Walsh,et al.  Performance analysis of single‐phase, multiphase, and multicomponent lattice‐Boltzmann fluid flow simulations on GPU clusters , 2011, Concurr. Comput. Pract. Exp..

[27]  M. Brenner,et al.  Events before droplet splashing on a solid surface , 2009, Journal of Fluid Mechanics.

[28]  Massimo Bernaschi,et al.  MUPHY: A parallel MUlti PHYsics/scale code for high performance bio-fluidic simulations , 2009, Comput. Phys. Commun..

[29]  D. Raabe,et al.  Shear stress in lattice Boltzmann simulations. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[30]  Tuomo Rossi,et al.  Comparison of implementations of the lattice-Boltzmann method , 2008, Comput. Math. Appl..

[31]  J. Ollitrault Relativistic hydrodynamics , 2007 .

[32]  Bastien Chopard,et al.  Lattice Boltzmann method with regularized pre-collision distribution functions , 2006, Math. Comput. Simul..

[33]  Raoyang Zhang,et al.  Efficient kinetic method for fluid simulation beyond the Navier-Stokes equation. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[34]  F. Toschi,et al.  Mesoscopic two-phase model for describing apparent slip in micro-channel flows , 2005, physics/0507026.

[35]  Regine von Klitzing,et al.  Disjoining pressure in thin liquid foam and emulsion films—new concepts and perspectives , 2003 .

[36]  M. Brenner,et al.  A Cascade of Structure in a Drop Falling from a Faucet , 1994, Science.

[37]  B. Derjaguin On the repulsive forces between charged colloid particles and on the theory of slow coagulation and stability of lyophobe sols. , 1993 .

[38]  Robert H. Davis,et al.  The lubrication force between spherical drops, bubbles and rigid particles in a viscous fluid , 1989 .

[39]  I. Tiselj,et al.  Lattice Boltzmann Method , 2022, Advanced Computational Techniques for Heat and Mass Transfer in Food Processing.

[40]  K. E. Jordan,et al.  Multiphysics simulations: Challenges and opportunities , 2013, Int. J. High Perform. Comput. Appl..

[41]  A. Lamuraa,et al.  Lattice Boltzmann model with hierarchical interactions , 2003 .

[42]  Vance Bergeron Forces and structure in thin liquid soap films , 1999 .

[43]  Robert H. Davis,et al.  The lubrication force between two viscous drops , 1989 .

[44]  J. A. V. BUTLER,et al.  Theory of the Stability of Lyophobic Colloids , 1948, Nature.