Material Selection for Minimizing Direct Tunneling in Nanowire Transistors
暂无分享,去创建一个
G. Klimeck | K. Alam | Hong-Hyun Park | Gerhard Klimeck | R. Lake | Hong-hyun Park | K. Alam | S. Sylvia | M. Khayer | R. K. Lake | S. S. Sylvia | M. A. Khayer
[1] Gerhard Klimeck,et al. Effective-mass reproducibility of the nearest-neighbor sp 3 s * models: Analytic results , 1997 .
[2] Krishna C. Saraswat,et al. High performance germanium MOSFETs , 2006 .
[3] M. Lundstrom,et al. Does source-to-drain tunneling limit the ultimate scaling of MOSFETs? , 2002, Digest. International Electron Devices Meeting,.
[4] Jeffrey Bokor,et al. Ultimate device scaling: Intrinsic performance comparisons of carbon-based, InGaAs, and Si field-effect transistors for 5 nm gate length , 2011, 2011 International Electron Devices Meeting.
[5] Gerhard Klimeck,et al. Single and multiband modeling of quantum electron transport through layered semiconductor devices , 1997 .
[6] Khairul Alam,et al. Leakage and performance of zero-Schottky-barrier carbon nanotube transistors , 2005 .
[7] R. Lake,et al. Modeling and performance analysis of GaN nanowire field-effect transistors and band-to-band tunneling field-effect transistors , 2010 .
[8] M. Luisier,et al. Simulation of nanowire tunneling transistors: From the Wentzel–Kramers–Brillouin approximation to full-band phonon-assisted tunneling , 2010 .
[9] C. O. Chui,et al. High Mobility Materials and Novel Device Structures for High Performance Nanoscale MOSFETs , 2006, 2006 International Electron Devices Meeting.
[10] H. Riel,et al. Toward Nanowire Electronics , 2008, IEEE Transactions on Electron Devices.
[11] E. Kane. Chapter 3 The k •p Method , 1966 .
[12] Gerhard Klimeck,et al. Bandstructure Effects in Silicon Nanowire Electron Transport , 2007, IEEE Transactions on Electron Devices.
[13] Experimental and theoretical explanation for the orientation dependence gate-induced drain leakage in scaled MOSFETs , 2009, 2009 Device Research Conference.
[14] K. D. Cantley,et al. Performance Analysis of III-V Materials in a Double-Gate nano-MOSFET , 2007, 2007 IEEE International Electron Devices Meeting.
[15] Gerhard Klimeck,et al. Novel channel materials for ballistic nanoscale MOSFETs-bandstructure effects , 2005, IEEE InternationalElectron Devices Meeting, 2005. IEDM Technical Digest..
[16] Boykin,et al. Generalized eigenproblem method for surface and interface states: The complex bands of GaAs and AlAs. , 1996, Physical review. B, Condensed matter.
[17] Gerhard Klimeck,et al. Performance evaluation of ballistic silicon nanowire transistors with atomic-basis dispersion relations , 2005 .
[18] W. Fichtner,et al. Atomistic simulation of nanowires in the sp3d5s* tight-binding formalism: From boundary conditions to strain calculations , 2006 .
[19] Mats-Erik Pistol,et al. InAs/GaSb heterostructure nanowires for tunnel field-effect transistors. , 2010, Nano letters.
[20] H.-S. Philip Wong,et al. Performance benchmarks for Si, III–V, TFET, and carbon nanotube FET - re-thinking the technology assessment methodology for complementary logic applications , 2010, 2010 International Electron Devices Meeting.
[21] R. Lake,et al. Drive Currents and Leakage Currents in InSb and InAs Nanowire and Carbon Nanotube Band-to-Band Tunneling FETs , 2009, IEEE Electron Device Letters.
[22] Gerhard Klimeck,et al. Bandstructure and orientation effects in ballistic Si and Ge nanowire FETs , 2005, IEEE InternationalElectron Devices Meeting, 2005. IEDM Technical Digest..
[23] Erik Lind,et al. III-V Nanowires—Extending a Narrowing Road , 2010, Proceedings of the IEEE.
[24] Performance of $n$-Type InSb and InAs Nanowire Field-Effect Transistors , 2008, IEEE Transactions on Electron Devices.
[25] Jerry R. Meyer,et al. Band parameters for III–V compound semiconductors and their alloys , 2001 .
[26] G. Klimeck,et al. Atomistic Full-Band Design Study of InAs Band-to-Band Tunneling Field-Effect Transistors , 2009, IEEE Electron Device Letters.
[27] M. Luisier,et al. Atomistic full-band simulations of silicon nanowire transistors: Effects of electron-phonon scattering , 2009 .
[28] Roger K. Lake,et al. Effects of band-tails on the subthreshold characteristics of nanowire band-to-band tunneling transistors , 2011 .
[29] G. Klimeck,et al. Electronic properties of silicon nanowires , 2005, IEEE Transactions on Electron Devices.
[30] Hao Yan,et al. Programmable nanowire circuits for nanoprocessors , 2011, Nature.
[31] Electronic properties of carbon nanotubes calculated from density functional theory and the empirical π-bond model , 2007, 0704.1168.
[32] Gerard Ghibaudo,et al. Impact of source-to-drain tunnelling on the scalability of arbitrary oriented alternative channel material nMOSFETs , 2008 .
[33] R. Lake,et al. Performance analysis of InP nanowire band-to-band tunneling field-effect transistors , 2009 .
[34] G. Klimeck,et al. NEMO5: A Parallel Multiscale Nanoelectronics Modeling Tool , 2011, IEEE Transactions on Nanotechnology.
[35] R. Martel,et al. Carbon nanotube field effect transistors - fabrication, device physics, and circuit implications , 2003, 2003 IEEE International Solid-State Circuits Conference, 2003. Digest of Technical Papers. ISSCC..