Material Selection for Minimizing Direct Tunneling in Nanowire Transistors

When the physical gate length is reduced to 5 nm, direct channel tunneling dominates the leakage current for both field-effect transistors (FETs) and tunnel FETs. Therefore, a survey of materials in a nanowire geometry is performed to determine their ability to suppress the direct tunnel current through a 5 nm barrier. The materials investigated are InAs, InSb, InP, GaAs, GaN, Si, Ge, and carbon nanotubes. The tunneling effective mass gives the best indication of the relative size of the tunnel currents when comparing two different materials of any type. The indirect-gap materials, Si and Ge, give the largest tunneling masses in the conduction band, and they give the smallest conduction band tunnel currents within the range of diameters considered. Si gives the lowest overall tunnel current for both the conduction and valence bands, and therefore, it is the optimum choice for suppressing tunnel current at the 5 nm scale. A semianalytic approach to calculating tunnel current is demonstrated, which requires considerably less computation than a full-band numerical calculation.

[1]  Gerhard Klimeck,et al.  Effective-mass reproducibility of the nearest-neighbor sp 3 s * models: Analytic results , 1997 .

[2]  Krishna C. Saraswat,et al.  High performance germanium MOSFETs , 2006 .

[3]  M. Lundstrom,et al.  Does source-to-drain tunneling limit the ultimate scaling of MOSFETs? , 2002, Digest. International Electron Devices Meeting,.

[4]  Jeffrey Bokor,et al.  Ultimate device scaling: Intrinsic performance comparisons of carbon-based, InGaAs, and Si field-effect transistors for 5 nm gate length , 2011, 2011 International Electron Devices Meeting.

[5]  Gerhard Klimeck,et al.  Single and multiband modeling of quantum electron transport through layered semiconductor devices , 1997 .

[6]  Khairul Alam,et al.  Leakage and performance of zero-Schottky-barrier carbon nanotube transistors , 2005 .

[7]  R. Lake,et al.  Modeling and performance analysis of GaN nanowire field-effect transistors and band-to-band tunneling field-effect transistors , 2010 .

[8]  M. Luisier,et al.  Simulation of nanowire tunneling transistors: From the Wentzel–Kramers–Brillouin approximation to full-band phonon-assisted tunneling , 2010 .

[9]  C. O. Chui,et al.  High Mobility Materials and Novel Device Structures for High Performance Nanoscale MOSFETs , 2006, 2006 International Electron Devices Meeting.

[10]  H. Riel,et al.  Toward Nanowire Electronics , 2008, IEEE Transactions on Electron Devices.

[11]  E. Kane Chapter 3 The k •p Method , 1966 .

[12]  Gerhard Klimeck,et al.  Bandstructure Effects in Silicon Nanowire Electron Transport , 2007, IEEE Transactions on Electron Devices.

[13]  Experimental and theoretical explanation for the orientation dependence gate-induced drain leakage in scaled MOSFETs , 2009, 2009 Device Research Conference.

[14]  K. D. Cantley,et al.  Performance Analysis of III-V Materials in a Double-Gate nano-MOSFET , 2007, 2007 IEEE International Electron Devices Meeting.

[15]  Gerhard Klimeck,et al.  Novel channel materials for ballistic nanoscale MOSFETs-bandstructure effects , 2005, IEEE InternationalElectron Devices Meeting, 2005. IEDM Technical Digest..

[16]  Boykin,et al.  Generalized eigenproblem method for surface and interface states: The complex bands of GaAs and AlAs. , 1996, Physical review. B, Condensed matter.

[17]  Gerhard Klimeck,et al.  Performance evaluation of ballistic silicon nanowire transistors with atomic-basis dispersion relations , 2005 .

[18]  W. Fichtner,et al.  Atomistic simulation of nanowires in the sp3d5s* tight-binding formalism: From boundary conditions to strain calculations , 2006 .

[19]  Mats-Erik Pistol,et al.  InAs/GaSb heterostructure nanowires for tunnel field-effect transistors. , 2010, Nano letters.

[20]  H.-S. Philip Wong,et al.  Performance benchmarks for Si, III–V, TFET, and carbon nanotube FET - re-thinking the technology assessment methodology for complementary logic applications , 2010, 2010 International Electron Devices Meeting.

[21]  R. Lake,et al.  Drive Currents and Leakage Currents in InSb and InAs Nanowire and Carbon Nanotube Band-to-Band Tunneling FETs , 2009, IEEE Electron Device Letters.

[22]  Gerhard Klimeck,et al.  Bandstructure and orientation effects in ballistic Si and Ge nanowire FETs , 2005, IEEE InternationalElectron Devices Meeting, 2005. IEDM Technical Digest..

[23]  Erik Lind,et al.  III-V Nanowires—Extending a Narrowing Road , 2010, Proceedings of the IEEE.

[24]  Performance of $n$-Type InSb and InAs Nanowire Field-Effect Transistors , 2008, IEEE Transactions on Electron Devices.

[25]  Jerry R. Meyer,et al.  Band parameters for III–V compound semiconductors and their alloys , 2001 .

[26]  G. Klimeck,et al.  Atomistic Full-Band Design Study of InAs Band-to-Band Tunneling Field-Effect Transistors , 2009, IEEE Electron Device Letters.

[27]  M. Luisier,et al.  Atomistic full-band simulations of silicon nanowire transistors: Effects of electron-phonon scattering , 2009 .

[28]  Roger K. Lake,et al.  Effects of band-tails on the subthreshold characteristics of nanowire band-to-band tunneling transistors , 2011 .

[29]  G. Klimeck,et al.  Electronic properties of silicon nanowires , 2005, IEEE Transactions on Electron Devices.

[30]  Hao Yan,et al.  Programmable nanowire circuits for nanoprocessors , 2011, Nature.

[31]  Electronic properties of carbon nanotubes calculated from density functional theory and the empirical π-bond model , 2007, 0704.1168.

[32]  Gerard Ghibaudo,et al.  Impact of source-to-drain tunnelling on the scalability of arbitrary oriented alternative channel material nMOSFETs , 2008 .

[33]  R. Lake,et al.  Performance analysis of InP nanowire band-to-band tunneling field-effect transistors , 2009 .

[34]  G. Klimeck,et al.  NEMO5: A Parallel Multiscale Nanoelectronics Modeling Tool , 2011, IEEE Transactions on Nanotechnology.

[35]  R. Martel,et al.  Carbon nanotube field effect transistors - fabrication, device physics, and circuit implications , 2003, 2003 IEEE International Solid-State Circuits Conference, 2003. Digest of Technical Papers. ISSCC..