Critical Evaluation of Scalar Roughness Length Parametrizations Over a Melting Valley Glacier

We present a field investigation over a melting valley glacier on the Tibetan Plateau. In the ablation zone, aerodynamic roughness lengths (z0M) vary on the order of 10−4–10−2 m, whose evolution corresponds to three melt phases with distinct surface cover and moisture exchange: snow (sublimation/evaporation), bare ice (deposition/condensation), and ice hummocks (sublimation/evaporation). Bowen-ratio similarity is validated in the stably stratified katabatic winds, which suggests a useful means for data quality check. A roughness sublayer is regarded as irrelevant to the present ablation season, because selected characteristics of scalar turbulence over smooth snow are quite similar to those over hummocky ice. We evaluate three parametrizations of the scalar roughness lengths (z0T for temperature and z0q for humidity), viz. key factors for the accurate estimation of sensible heat and latent heat fluxes using the bulk aerodynamic method. The first approach is based on surface-renewal models and has been widely applied in glaciated areas; the second has never received application over an ice/snow surface, despite its validity in (semi-)arid regions; the third, a derivative of the first, is proposed for use specifically over rough ice defined as z0M > 10−3 m or so. This empirical z0M threshold value is deemed of general relevance to glaciated areas (e.g. ice sheet/cap and valley/outlet glaciers), above which the first approach gives notably underestimated z0T,q. The first and the third approaches tend to underestimate and overestimate turbulent heat/moisture exchange, respectively, frequently leading to relative errors higher than 30%. Comparatively, the second approach produces fairly low errors in energy flux estimates both in individual melt phases and over the whole ablation season; it thus emerges as a practically useful choice to parametrize z0T,q in glaciated areas. Moreover, we find all three candidate parametrizations unable to predict diurnal variations in the excess resistances to humidity transfer, thus encouraging more efforts for improvement.

[1]  William J. Massman,et al.  Handbook of micrometeorology : a guide for surface flux measurement and analysis , 2004 .

[2]  Jielun Sun,et al.  Diurnal Variations of Thermal Roughness Height over a Grassland , 1999 .

[3]  M. R. van den Broeke,et al.  Analysis of meteorological data and the surface energy balance of McCall Glacier, Alaska, USA , 2005, Journal of Glaciology.

[4]  P. Duynkerke,et al.  Turbulence in a katabatic flow: Does it resemble turbulence in stable boundary layers over flat surfaces? , 1999 .

[5]  Albert Rango,et al.  Principles of snow hydrology , 2008 .

[6]  T. W. Horst,et al.  Parameterizing turbulent exchange over sea ice in winter , 2010 .

[7]  M. R. van den Broeke,et al.  Temporal and Spatial Variations of the Aerodynamic Roughness Length in the Ablation Zone of the Greenland Ice Sheet , 2008 .

[8]  C. J. P. P. Smeets,et al.  The Parameterisation of Scalar Transfer over Rough Ice , 2008 .

[9]  J. Garratt The Atmospheric Boundary Layer , 1992 .

[10]  Jonathan L. Bamber,et al.  Mass Balance of the Cryosphere , 2004 .

[11]  A. Meesters,et al.  Turbulence Observations Above a Smooth Melting Surface on the Greenland Ice Sheet , 1997 .

[12]  R. McMillen,et al.  An eddy correlation technique with extended applicability to non-simple terrain , 1988 .

[13]  Takane Matsumoto,et al.  Influence of weather conditions and spatial variability on glacier surface melt in Chilean Patagonia , 2010 .

[14]  Liss M. Andreassen,et al.  A 5 year record of surface energy and mass balance from the ablation zone of Storbreen, Norway , 2008, Journal of Glaciology.

[15]  J. Oerlemans The atmospheric boundary layer over melting glaciers , 1998 .

[16]  C. Smeets,et al.  Turbulence Characteristics Of The Stable Boundary Layer Over A Mid-Latitude Glacier. Part Ii: Pure Katabatic Forcing Conditions , 2000 .

[17]  Michael Lehning,et al.  On Shear-Driven Ventilation of Snow , 2008 .

[18]  Wei Yang,et al.  Deposition of anthropogenic aerosols in a southeastern Tibetan glacier , 2009 .

[19]  D. S. Munro,et al.  Surface Roughness and Bulk Heat Transfer on a Glacier: Comparison with Eddy Correlation , 1989, Journal of Glaciology.

[20]  Thomas Foken,et al.  Impact of post-field data processing on eddy covariance flux estimates and energy balance closure , 2006 .

[21]  M. Broeke,et al.  Momentum and scalar transfer coefficients over aerodynamically smooth antarctic surfaces , 1995 .

[22]  Characteristics of atmospheric turbulence in the surface layer over Antarctica , 1991 .

[23]  Thomas Foken,et al.  On the Significance of the Webb Correction to Fluxes, Corrigendum , 2004 .

[24]  Richard Bintanja,et al.  The local surface energy balance of the Ecology Glacier, King George Island, Antarctica: measurements and modelling , 1995, Antarctic Science.

[25]  M. Rotach,et al.  On the turbulence structure in the stable boundary layer over the Greenland ice sheet , 1997 .

[26]  John J. Cassano,et al.  The Role of Katabatic Winds on the Antarctic Surface Wind Regime , 2003 .

[27]  Edgar L. Andreas,et al.  A theory for the scalar roughness and the scalar transfer coefficients over snow and sea ice , 1987 .

[28]  D. S. Munro,et al.  An experimental study of the glacier boundary layer over melting ice , 1977, Journal of Glaciology.

[29]  C. J. Moore Frequency response corrections for eddy correlation systems , 1986 .

[30]  S. Argentini,et al.  Contrasts between the summertime surface energy balance and boundary layer structure at Dome C and Halley stations, Antarctica , 2006 .

[31]  J. King Some measurements of turbulence over an antarctic ice shelf , 1990 .

[32]  Thomas Foken,et al.  On the Significance of the Webb Correction to Fluxes , 2003 .

[33]  F. Clauser The Structure of Turbulent Shear Flow , 1957, Nature.

[34]  S. Basu,et al.  Local scaling characteristics of Antarctic surface layer turbulence , 2010 .

[35]  B. Grisogono,et al.  Describing surface fluxes in katabatic flow on Breidamerkurjökull, Iceland , 2004 .

[36]  Johannes Oerlemans,et al.  Energy Balance of a Glacier Surface: Analysis of Automatic Weather Station Data from the Morteratschgletscher, Switzerland , 2002 .

[37]  B. Denby,et al.  The use of bulk and profile methods for determining surface heat fluxes in the presence of glacier winds , 2000, Journal of Glaciology.

[38]  A. Payne,et al.  Mass Balance of the Cryosphere , 2004 .

[39]  A. Holtslag,et al.  Applied Modeling of the Nighttime Surface Energy Balance over Land , 1988 .

[40]  M. Sharp,et al.  Measurement and parameterization of aerodynamic roughness length variations at Haut Glacier d'Arolla, Switzerland , 2006 .

[41]  Edgar L. Andreas,et al.  Parametrizing turbulent exchange over summer sea ice and the marginal ice zone , 2010 .

[42]  Thomas Foken,et al.  Post-Field Data Quality Control , 2004 .

[43]  Edgar L. Andreas,et al.  Parameterizing turbulent exchange over sea ice: the ice station weddell results , 2005 .

[44]  T. W. Horst,et al.  J1.15 PARAMETERIZING THE TURBULENT SURFACE FLUXES OVER SUMMER SEA ICE , 2004 .

[45]  M. Raupach,et al.  The Effect of Source Distribution on Bulk Scalar Transfer between a Rough Land Surface and the Atmosphere , 2010 .

[46]  E. K. Webb,et al.  Correction of flux measurements for density effects due to heat and water vapour transfer , 1980 .

[47]  Local Similarity Properties of the Continuously Turbulent Stable Boundary Layer over Greenland , 2003 .

[48]  Johannes Oerlemans,et al.  Glaciers and climate change , 2001 .

[49]  M. R. van den Broeke,et al.  Surface layer climate and turbulent exchange in the ablation zone of the west Greenland ice sheet , 2009 .

[50]  J. Oerlemans,et al.  Surface energy balance in the ablation zone of Midtdalsbreen, a glacier in southern Norway: Interannual variability and the effect of clouds , 2008 .

[51]  Anne Verhoef,et al.  Some Practical Notes on the Parameter kB−1 for Sparse Vegetation , 1997 .

[52]  Frans T. M. Nieuwstadt,et al.  Temperature measurement with a sonic anemometer and its application to heat and moisture fluxes , 1983 .

[53]  John Finnigan,et al.  Coordinate Systems and Flux Bias Error , 2004 .

[54]  R. Stull An Introduction to Boundary Layer Meteorology , 1988 .

[55]  F. Stössel,et al.  Micrometeorological and morphological observations of surface hoar dynamics on a mountain snow cover , 2010 .

[56]  Vijay P. Singh,et al.  Snow and Glacier Hydrology , 2001 .

[57]  H. Löwe,et al.  Statistical properties of fresh snow roughness , 2008 .

[58]  G. Heinemann The polar regions: a natural laboratory for boundary layer meteorology a review , 2008 .

[59]  M. Broeke Momentum, Heat, and Moisture Budgets of the Katabatic Wind Layer over a Midlatitude Glacier in Summer , 1997 .

[60]  Toshio Koike,et al.  Improvement of surface flux parametrizations with a turbulence‐related length , 2002 .

[61]  E. L. Andreas Parameterizing Scalar Transfer over Snow and Ice: A Review , 2002 .

[62]  M. R. van den Broeke,et al.  Daily cycle of the surface energy balance in Antarctica and the influence of clouds , 2006 .

[63]  William P. Kustas,et al.  An Evaluation of Two Models for Estimation of the Roughness Height for Heat Transfer between the Land Surface and the Atmosphere , 2001 .

[64]  B. Grisogono,et al.  Glacier winds and parameterisation of the related surface heat fluxes , 2002 .

[65]  M. Menenti,et al.  Analysis of the land surface heterogeneity and its impact on atmospheric variables and the aerodynamic and thermodynamic roughness lengths , 2008 .

[66]  Toshio Koike,et al.  Surface Flux Parameterization in the Tibetan Plateau , 2003 .

[67]  Anastasios A. Tsonis An Introduction to Atmospheric Thermodynamics , 2002 .

[68]  C. Smeets,et al.  Observed Wind Profiles and Turbulence Fluxes over an ice Surface with Changing Surface Roughness , 1999 .

[69]  H. Björnsson,et al.  Glacio-Meteorological Investigations On Vatnajökull, Iceland, Summer 1996: An Overview , 1999 .

[70]  T. Oke,et al.  Relative Efficiencies of Turbulent Transfer of Heat, Mass, and Momentum over a Patchy Urban Surface , 1995 .

[71]  C. Veen,et al.  Partitioning of melt energy and meltwater fluxes in the ablation zone of the west Greenland ice sheet , 2008 .

[72]  Shunichi Kobayashi,et al.  A study of the structure of low-level katabatic winds at Mizuho Station, East Antarctica , 1986 .

[73]  Yaoming Ma,et al.  Method Development for Estimating Sensible Heat Flux over the Tibetan Plateau from CMA Data , 2009 .

[74]  Philip S. Anderson,et al.  Boundary layer physics over snow and ice , 2007 .

[75]  P. Mason Atmospheric boundary layer flows: Their structure and measurement , 1995 .

[76]  J. Kaimal,et al.  Spectral Characteristics of Surface-Layer Turbulence , 1972 .

[77]  Regine Hock,et al.  Glacier melt: a review of processes and their modelling , 2005 .

[78]  D. S. Munro,et al.  On fitting the log-linear model to wind speed and temperature profiles over a melting glacier , 1978 .

[79]  X. Zeng,et al.  An intercomparison of bulk aerodynamic algorithms used over sea ice with data from the Surface Heat Budget for the Arctic Ocean (SHEBA) experiment , 2006 .

[80]  J. Oerlemans,et al.  Comparison of the meteorology and surface energy balance at Storbreen and Midtdalsbreen, two glaciers in southern Norway , 2009 .

[81]  J. Qin,et al.  Improving the Noah Land Surface Model in Arid Regions with an Appropriate Parameterization of the Thermal Roughness Length , 2010 .

[82]  D. S. Munro LINKING THE WEATHER TO GLACIER HYDROLOGY AND MASS BALANCE AT PEYTO , 2006 .

[83]  Toshio Koike,et al.  Turbulent flux transfer over bare-soil surfaces: Characteristics and parameterization , 2008 .

[84]  L. Mahrt Computing turbulent fluxes near the surface: Needed improvements , 2010 .

[85]  C. Genthon,et al.  Mass Balance of the Cryosphere: Modelling land-ice surface mass balance , 2004 .

[86]  C. J. P. P. Smeets,et al.  Turbulence Characteristics of the Stable Boundary Layer Over a Mid-Latitude Glacier. Part I: A Combination of Katabatic and Large-Scale Forcing , 1998 .

[87]  M. R. van den Broeke Structure and diurnal variation of the atmospheric boundary layer over a mid-latitude glacier in summer , 1997 .

[88]  B. Denby,et al.  A comparison of surface renewal theory with the observed roughness length for temperature on a melting glacier surface , 2002 .

[89]  S. Hudson,et al.  A Look at the Surface-Based Temperature Inversion on the Antarctic Plateau , 2005 .

[90]  John C. King,et al.  Evaluation of Turbulent Surface Flux Parameterizations for the Stable Surface Layer over Halley, Antarctica* , 2001 .

[91]  J. Oerlemans Analysis of a 3 year meteorological record from the ablation zone of Morteratschgletscher, Switzerland: energy and mass balance , 2000, Journal of Glaciology.