Liu-Type Multinomial Logistic Estimator

Multicollinearity in multinomial logistic regression affects negatively on the variance of the maximum likelihood estimator. That leads to inflated confidence intervals and theoretically important variables become insignificant in testing hypotheses. In this paper, Liu-type estimator is proposed that has smaller total mean squared error than the maximum likelihood estimator. The proposed estimator is a general estimator which includes other biased estimators such as Liu estimator and ridge estimator as special cases. Simulation studies and an application are given to evaluate the performance of our estimator. The results indicate that the proposed estimator is more efficient and reliable than the conventional estimators.

[1]  A. E. Hoerl,et al.  Ridge Regression: Applications to Nonorthogonal Problems , 1970 .

[2]  P. McCullagh,et al.  Generalized Linear Models , 1984 .

[3]  R. Schaefer,et al.  A ridge logistic estimator , 1984 .

[4]  R. Schaefer Alternative estimators in logistic regression when the data are collinear , 1986 .

[5]  G. Monette,et al.  Generalized Collinearity Diagnostics , 1992 .

[6]  Liu Kejian,et al.  A new class of blased estimate in linear regression , 1993 .

[7]  A. E. Hoerl,et al.  Ridge regression: biased estimation for nonorthogonal problems , 2000 .

[8]  Kejian Liu Using Liu-Type Estimator to Combat Collinearity , 2003 .

[9]  B. M. Kibria,et al.  Performance of Some New Ridge Regression Estimators , 2003 .

[10]  More on Liu-Type Estimator in Linear Regression , 2004 .

[11]  A. M. Aguilera,et al.  Solving Multicollinearity in Functional Multinomial Logit Models for Nominal and Ordinal Responses , 2008 .

[12]  G. Shukur,et al.  Developing Ridge Parameters for SUR Model , 2008 .

[13]  A. Lucadamo,et al.  Estimating multinomial logit model with multicollinear data , 2008 .

[14]  Modified Ridge Parameters for Seemingly Unrelated Regression Model , 2010 .

[15]  G. Shukur,et al.  On Ridge Parameters in Logistic Regression , 2011 .

[16]  Jiewu Huang,et al.  A Simulation Research on a Biased Estimator in Logistic Regression Model , 2012, ISICA.

[17]  G. Shukur,et al.  On Liu Estimators for the Logit Regression Model , 2012 .

[18]  Gerhard Tutz,et al.  Ridge estimation for multinomial logit models with symmetric side constraints , 2013, Comput. Stat..

[19]  Deniz Inan,et al.  Liu-Type Logistic Estimator , 2013, Commun. Stat. Simul. Comput..

[20]  A. Genç,et al.  Modified ridge regression parameters: A comparative Monte Carlo study , 2014 .

[21]  M. Ranalli,et al.  Multinomial logistic estimation in dual frame surveys , 2015 .

[22]  Fatma Sevinç Kurnaz,et al.  A new Liu-type estimator , 2015 .

[23]  B. M. Golam Kibria,et al.  Journal of Modern Applied Statistical Methods Some Ridge Regression Estimators and Their Performances Some Ridge Regression Estimators and Their Performances , 2022 .

[24]  Liu-Type Logistic Estimators with Optimal Shrinkage Parameter , 2016 .

[25]  Yasin Asar,et al.  New Shrinkage Parameters for the Liu-type Logistic Estimators , 2016, Commun. Stat. Simul. Comput..

[26]  Yasin Asar,et al.  Some new methods to solve multicollinearity in logistic regression , 2017, Commun. Stat. Simul. Comput..

[27]  Mohamed R. Abonazel A Practical Guide for Creating Monte Carlo Simulation Studies Using R , 2018 .

[28]  Jerome P. Reiter,et al.  Regression Modeling and File Matching Using Possibly Erroneous Matching Variables , 2016, Journal of Computational and Graphical Statistics.