Adaptive iterative linearization Galerkin methods for nonlinear problems
暂无分享,去创建一个
[1] J. Melenk,et al. An hp‐adaptive Newton‐Galerkin finite element procedure for semilinear boundary value problems , 2016, 1602.05354.
[2] Kari Astala,et al. Elliptic Partial Differential Equations and Quasiconformal Mappings in the Plane (Pms-48) , 2009 .
[3] Pedro Morin,et al. Convergence of an adaptive Kačanov FEM for quasi-linear problems , 2010, 1006.3319.
[4] Thomas P. Wihler,et al. An adaptive Newton-method based on a dynamical systems approach , 2014, Commun. Nonlinear Sci. Numer. Simul..
[5] Christine Bernardi,et al. A posteriori analysis of iterative algorithms for a nonlinear problem , 2015, J. Sci. Comput..
[6] W. Dörfler. A convergent adaptive algorithm for Poisson's equation , 1996 .
[7] Weimin Han,et al. The Kaccanov method for some nonlinear problems , 1997 .
[8] E. Zeidler. Nonlinear functional analysis and its applications , 1988 .
[9] W. Rudin. Real and complex analysis , 1968 .
[10] Andreas Potschka,et al. Backward Step Control for Global Newton-Type Methods , 2016, SIAM J. Numer. Anal..
[11] Martin Vohralík,et al. Adaptive Inexact Newton Methods with A Posteriori Stopping Criteria for Nonlinear Diffusion PDEs , 2013, SIAM J. Sci. Comput..
[12] Stefan A. Funken,et al. Efficient implementation of adaptive P1-FEM in Matlab , 2011, Comput. Methods Appl. Math..
[13] Martin Vohralík,et al. A Posteriori Error Estimates Including Algebraic Error and Stopping Criteria for Iterative Solvers , 2010, SIAM J. Sci. Comput..
[14] A. Ern,et al. Guaranteed and robust a posteriori error estimates and balancing discretization and linearization errors for monotone nonlinear problems , 2011 .
[15] Thomas P. Wihler,et al. THE NEWTON–RAPHSON METHOD AND ADAPTIVE ODE SOLVERS , 2011 .
[16] Jindřich Nečas,et al. Introduction to the Theory of Nonlinear Elliptic Equations , 1986 .
[17] W. Mitchell. Adaptive refinement for arbitrary finite-element spaces with hierarchical bases , 1991 .
[18] Thomas P. Wihler,et al. Iterative Galerkin discretizations for strongly monotone problems , 2015, J. Comput. Appl. Math..
[19] Paul Houston,et al. An hp-adaptive Newton-discontinuous-Galerkin finite element approach for semilinear elliptic boundary value problems , 2016, Math. Comput..
[20] Dirk Praetorius,et al. Rate optimal adaptive FEM with inexact solver for nonlinear operators , 2016, 1611.05212.
[21] J. Oden,et al. A Posteriori Error Estimation in Finite Element Analysis , 2000 .
[22] Peter Deuflhard,et al. Newton Methods for Nonlinear Problems , 2004 .
[23] Rüdiger Verfürth,et al. A Posteriori Error Estimation Techniques for Finite Element Methods , 2013 .
[24] Omar Lakkis,et al. Elliptic reconstruction and a posteriori error estimates for fully discrete linear parabolic problems , 2006, Math. Comput..
[25] Ricardo H. Nochetto,et al. Elliptic reconstruction and a posteriori error estimates for fully discrete linear parabolic problems , 2006, Math. Comput..
[26] T. Wihler,et al. An adaptive space-time Newton–Galerkin approach for semilinear singularly perturbed parabolic evolution equations , 2016 .
[27] Manil Suri,et al. A posteriori estimation of the linearization error for strongly monotone nonlinear operators , 2007 .