Adaptive iterative linearization Galerkin methods for nonlinear problems

A wide variety of (fixed-point) iterative methods for the solution of nonlinear equations (in Hilbert spaces) exists. In many cases, such schemes can be interpreted as iterative local linearization methods, which, as will be shown, can be obtained by applying a suitable preconditioning operator to the original (nonlinear) equation. Based on this observation, we will derive a unified abstract framework which recovers some prominent iterative schemes. In particular, for Lipschitz continuous and strongly monotone operators, we derive a general convergence analysis. Furthermore, in the context of numerical solution schemes for nonlinear partial differential equations, we propose a combination of the iterative linearization approach and the classical Galerkin discretization method, thereby giving rise to the so-called iterative linearization Galerkin (ILG) methodology. Moreover, still on an abstract level, based on two different elliptic reconstruction techniques, we derive a posteriori error estimates which separately take into account the discretization and linearization errors. Furthermore, we propose an adaptive algorithm, which provides an efficient interplay between these two effects. In addition, the ILG approach will be applied to the specific context of finite element discretizations of quasilinear elliptic equations, and some numerical experiments will be performed.

[1]  J. Melenk,et al.  An hp‐adaptive Newton‐Galerkin finite element procedure for semilinear boundary value problems , 2016, 1602.05354.

[2]  Kari Astala,et al.  Elliptic Partial Differential Equations and Quasiconformal Mappings in the Plane (Pms-48) , 2009 .

[3]  Pedro Morin,et al.  Convergence of an adaptive Kačanov FEM for quasi-linear problems , 2010, 1006.3319.

[4]  Thomas P. Wihler,et al.  An adaptive Newton-method based on a dynamical systems approach , 2014, Commun. Nonlinear Sci. Numer. Simul..

[5]  Christine Bernardi,et al.  A posteriori analysis of iterative algorithms for a nonlinear problem , 2015, J. Sci. Comput..

[6]  W. Dörfler A convergent adaptive algorithm for Poisson's equation , 1996 .

[7]  Weimin Han,et al.  The Kaccanov method for some nonlinear problems , 1997 .

[8]  E. Zeidler Nonlinear functional analysis and its applications , 1988 .

[9]  W. Rudin Real and complex analysis , 1968 .

[10]  Andreas Potschka,et al.  Backward Step Control for Global Newton-Type Methods , 2016, SIAM J. Numer. Anal..

[11]  Martin Vohralík,et al.  Adaptive Inexact Newton Methods with A Posteriori Stopping Criteria for Nonlinear Diffusion PDEs , 2013, SIAM J. Sci. Comput..

[12]  Stefan A. Funken,et al.  Efficient implementation of adaptive P1-FEM in Matlab , 2011, Comput. Methods Appl. Math..

[13]  Martin Vohralík,et al.  A Posteriori Error Estimates Including Algebraic Error and Stopping Criteria for Iterative Solvers , 2010, SIAM J. Sci. Comput..

[14]  A. Ern,et al.  Guaranteed and robust a posteriori error estimates and balancing discretization and linearization errors for monotone nonlinear problems , 2011 .

[15]  Thomas P. Wihler,et al.  THE NEWTON–RAPHSON METHOD AND ADAPTIVE ODE SOLVERS , 2011 .

[16]  Jindřich Nečas,et al.  Introduction to the Theory of Nonlinear Elliptic Equations , 1986 .

[17]  W. Mitchell Adaptive refinement for arbitrary finite-element spaces with hierarchical bases , 1991 .

[18]  Thomas P. Wihler,et al.  Iterative Galerkin discretizations for strongly monotone problems , 2015, J. Comput. Appl. Math..

[19]  Paul Houston,et al.  An hp-adaptive Newton-discontinuous-Galerkin finite element approach for semilinear elliptic boundary value problems , 2016, Math. Comput..

[20]  Dirk Praetorius,et al.  Rate optimal adaptive FEM with inexact solver for nonlinear operators , 2016, 1611.05212.

[21]  J. Oden,et al.  A Posteriori Error Estimation in Finite Element Analysis , 2000 .

[22]  Peter Deuflhard,et al.  Newton Methods for Nonlinear Problems , 2004 .

[23]  Rüdiger Verfürth,et al.  A Posteriori Error Estimation Techniques for Finite Element Methods , 2013 .

[24]  Omar Lakkis,et al.  Elliptic reconstruction and a posteriori error estimates for fully discrete linear parabolic problems , 2006, Math. Comput..

[25]  Ricardo H. Nochetto,et al.  Elliptic reconstruction and a posteriori error estimates for fully discrete linear parabolic problems , 2006, Math. Comput..

[26]  T. Wihler,et al.  An adaptive space-time Newton–Galerkin approach for semilinear singularly perturbed parabolic evolution equations , 2016 .

[27]  Manil Suri,et al.  A posteriori estimation of the linearization error for strongly monotone nonlinear operators , 2007 .