Linkage Between In-Stream Total Phosphorus and Land Cover in Chugoku District, Japan: An Ann Approach

Linkage Between In-Stream Total Phosphorus and Land Cover in Chugoku District, Japan: An Ann Approach Development of any area often leads to more intensive land use and increase in the generation of pollutants. Modeling these changes is critical to evaluate emerging changes in land use and their effect on stream water quality. The objective of this study was to assess the impact of spatial patterns in land use and population density on the water quality of streams, in case of data scarcity, in the Chugoku district of Japan. The study employed artificial neural network (ANN) technique to assess the relationship between the total phosphorous (TP) in river water and the land use in 21 river basins in the district, and the model was able to reasonably estimate the TP in the stream water. Uncertainty analysis of ANN estimates was performed using the Monte Carlo framework, and the results indicated that the ANN model predictions are statistically similar to the characteristics of the measured TP values. It was observed that any reduction in forested area or increase in agricultural land in the watersheds may cause the increase of TP concentration in the stream. Therefore, appropriate watershed management practices should be followed before making any land use change in the Chugoku district. Vzťah Medzi Celkovým Obsahom Fosforu v Toku a Porastom v Dištrikte Chugoku, Japonsko: Využitie Neurónových Sietí Rozvoj územia často súvisí so zintenzívnením využívania krajiny a produkciou znečistenia. Dôležité je modelovanie týchto zmien a ich vplyvu na kvalitu vody v tokoch. Cieľom štúdie je určiť vplyv priestorových zmien pri využívaní krajiny a zmeny hustoty osídlenia na kvalitu vody v tokoch v čase nedostatku vody v oblasti Chugoku, Japonsko. Pri riešení sa využívajú umelé neurónové siete (artificial neural network -ANN), prostredníctvom ktorých sa určuje vzťah medzi celkovým obsahom fosforu (TP) v toku a využívaním kajiny v 21 povodiach oblasti; tento model je schopný vypočítať TP v tokoch. Analýza neurčitosti výsledkov dosiahnutých pomocou ANN bola vykonaná metódou Monte Carlo; výsledky analýzy naznačujú, že predpovede pomocou metódy ANN sú štatisticky podobné meraným hodnotám TP. Bolo zistené, že redukcia lesnatosti a zvýšenie plochy poľnohospodársky využívanej pôdy v povodí môže viesť k zvýšeniu koncentrrácie TP v toku. Je preto potrebné pred zmenou vo využívaní krajiny prijať zodpovedajúce opatrenia v manažmente krajiny, ktoré budú minimalizovať negatívne dôsledky zmien využívania krajiny.

[1]  K. P. Sudheer,et al.  Methods used for the development of neural networks for the prediction of water resource variables in river systems: Current status and future directions , 2010, Environ. Model. Softw..

[2]  Nicola Fohrer,et al.  Modelling point and diffuse source pollution of nitrate in a rural lowland catchment using the SWAT model , 2010 .

[3]  Keith Beven,et al.  Uncertainty assessment of a process-based integrated catchment model of phosphorus , 2009 .

[4]  N. Fohrer,et al.  Ecohydrological modelling of water discharge and nitrate loads in a mesoscale lowland catchment, Germany , 2009 .

[5]  N. Fohrer,et al.  SEPAL – a simple GIS-based tool to estimate sediment pathways in lowland catchments , 2009 .

[6]  Enes Makalic,et al.  Universal Models for the Exponential Distribution , 2009, IEEE Transactions on Information Theory.

[7]  X. Cheng,et al.  Spatio-temporal dynamics of nutrients in the upper Han River basin, China. , 2009, Journal of hazardous materials.

[8]  Zhifang Xu,et al.  Dissolved trace elements and heavy metals in the Danjiangkou Reservoir, China , 2008 .

[9]  N. Fohrer,et al.  A method to assess instream water quality - the role of nitrogen entries in a North German rural lowland catchment , 2008 .

[10]  Indrajeet Chaubey,et al.  A simplified approach to quantifying predictive and parametric uncertainty in artificial neural network hydrologic models , 2007 .

[11]  N. Fohrer,et al.  Assessment of nutrient entry pathways and dominating hydrological processes in lowland catchments , 2007 .

[12]  Michael Rode,et al.  Multi-objective calibration of a river water quality model—Information content of calibration data , 2007 .

[13]  J. Freer,et al.  Processes affecting transfer of sediment and colloids, with associated phosphorus, from intensively farmed grasslands: a critical note on modelling of phosphorus transfers , 2007 .

[14]  Ajit Pratap Singh,et al.  Water quality management of a stretch of river Yamuna: An interactive fuzzy multi-objective approach , 2007 .

[15]  Simon Li,et al.  Uncertainties in real‐time flood forecasting with neural networks , 2007 .

[16]  B. Amiri Modeling the relationship between river water quality and environmental factors in the basins of the Chugoku district, west Japan , 2007 .

[17]  Indrajeet Chaubey,et al.  LAKE WATER QUALITY ASSESSMENT FROM LANDSAT THEMATIC MAPPER DATA USING NEURAL NETWORK: AN APPROACH TO OPTIMAL BAND COMBINATION SELECTION1 , 2006 .

[18]  Paulin Coulibaly,et al.  Bayesian neural network for rainfall‐runoff modeling , 2006 .

[19]  A van Griensven,et al.  Methods to quantify and identify the sources of uncertainty for river basin water quality models. , 2006, Water science and technology : a journal of the International Association on Water Pollution Research.

[20]  Martin F. Lambert,et al.  Bayesian training of artificial neural networks used for water resources modeling , 2005 .

[21]  Randy A. Dahlgren,et al.  Land use and land cover influence on water quality in the last free-flowing river draining the western Sierra Nevada, California , 2005 .

[22]  Jim Freer,et al.  Spatial variability of soil phosphorus in relation to the topographic index and critical source areas: sampling for assessing risk to water quality. , 2005, Journal of environmental quality.

[23]  Carlos E.N. Gatts,et al.  Neural pattern recognition and multivariate data: water typology of the Paraiba do Sul River, Brazil , 2005, Environ. Model. Softw..

[24]  Louise Heathwaite,et al.  An investigation into the inputs controlling predictions from a diffuse phosphorus loss model for the UK; the Phosphorus Indicators Tool (PIT). , 2005, The Science of the total environment.

[25]  Hans-Georg Frede,et al.  Considering spatial distribution and deposition of sediment in lumped and semi‐distributed models , 2005 .

[26]  I. Chaubey,et al.  Artificial Neural Networks Application in Lake Water Quality Estimation Using Satellite Imagery , 2004 .

[27]  P. Willems,et al.  Sensitivity and uncertainty analysis for river quality modelling , 2004 .

[28]  R. E. Turner,et al.  Linking Landscape and Water Quality in the Mississippi River Basin for 200 Years , 2003 .

[29]  Jan Feyen,et al.  Use of sensitivity and uncertainty measures in distributed hydrological modeling with an application to the MIKE SHE model , 2002 .

[30]  Gianluigi Rech,et al.  Forecasting with artificial neural network models , 2002 .

[31]  L. Sliva,et al.  Buffer zone versus whole catchment approaches to studying land use impact on river water quality. , 2001, Water research.

[32]  Tomohiko Oishi,et al.  Application of neural network method to case II water , 2000, SPIE Remote Sensing.

[33]  K. Thirumalaiah,et al.  Hydrological Forecasting Using Neural Networks , 2000 .

[34]  Holger R. Maier,et al.  Neural networks for the prediction and forecasting of water resource variables: a review of modelling issues and applications , 2000, Environ. Model. Softw..

[35]  Sylvie Thiria,et al.  Applying artificial neural network methodology to ocean color remote sensing , 1999 .

[36]  A. Soldati,et al.  River flood forecasting with a neural network model , 1999 .

[37]  Roland Doerffer,et al.  Neural network for emulation of an inverse model: operational derivation of Case II water properties from MERIS data , 1999 .

[38]  Xiao‐Hai Yan,et al.  A Neural Network Model for Estimating Sea Surface Chlorophyll and Sediments from Thematic Mapper Imagery , 1998 .

[39]  C. Neal,et al.  Factors regulating the spatial and temporal distribution of solute concentrations in a major river system in NE Scotland , 1998 .

[40]  Carl Richards,et al.  Landscape influences on water chemistry in Midwestern stream ecosystems , 1997 .

[41]  J. Allan,et al.  The influence of catchment land use on stream integrity across multiple spatial scales , 1997 .

[42]  Chang-tseh Hsieh,et al.  Some Potential Applications of Artificial Neural Systems in Financial Management , 1993 .

[43]  Keith Beven,et al.  The future of distributed models: model calibration and uncertainty prediction. , 1992 .

[44]  Russell C. Eberhart,et al.  Neural network PC tools: a practical guide , 1990 .

[45]  Halbert White,et al.  Learning in Artificial Neural Networks: A Statistical Perspective , 1989, Neural Computation.

[46]  J. Hem Study and Interpretation of the Chemical Characteristics of Natural Water , 1989 .

[47]  Geoffrey E. Hinton,et al.  Learning representations by back-propagating errors , 1986, Nature.

[48]  Alan R. Hill,et al.  STREAM PHOSPHORUS EXPORTS FROM WATERSHEDS WITH CONTRASTING LAND USES IN SOUTHERN ONTARIO1 , 1981 .