Introduction to Simulation Techniques

These lectures give an introduction to Monte Carlo simulations of classical statistical physics systems and their statistical analysis. After briefly recalling a few elementary properties of phase transitions, the concept of importance sampling Monte Carlo methods is discussed and illustrated by a few standard local update algorithms (Metropolis, heat-bath, Glauber). Then emphasis is placed on thorough analyses of the generated data paying special attention to the choice of estimators, autocorrelation times and statistical error analysis. This leads to the phenomenon of critical slowing down at continuous phase transitions. For illustration purposes, only the two-dimensional Ising model will be needed. To overcome the slowing-down problem, non-local cluster algorithms have been developed which will be discussed next. Then the general tool of reweighting techniques will be explained. This paves the way to introduce simulated and parallel tempering methods which are very useful for simulations of complex, possibly disordered systems. Finally, also the important alternative approach using multicanonical ensembles is briefly outlined.

[1]  C. Borgs,et al.  Finite-size scaling for Potts models , 1991 .

[2]  Peter Grassberger,et al.  Damage spreading and critical exponents for “model A” Ising dynamics , 1995 .

[3]  Binder,et al.  Finite-size effects at temperature-driven first-order transitions. , 1986, Physical review. B, Condensed matter.

[4]  Vladimir Privman,et al.  Finite Size Scaling and Numerical Simulation of Statistical Systems , 1990 .

[5]  Janke,et al.  New method to determine first-order transition points from finite-size data. , 1992, Physical review letters.

[6]  C. Fortuin On the random-cluster model: III. The simple random-cluster model , 1972 .

[7]  G. Torrie,et al.  Monte Carlo free energy estimates using non-Boltzmann sampling: Application to the sub-critical Lennard-Jones fluid , 1974 .

[8]  E Lippiello,et al.  Comment on "Aging, phase ordering, and conformal invariance". , 2003, Physical review letters.

[9]  Wolfhard Janke,et al.  Geometrical vs. Fortuin–Kasteleyn clusters in the two-dimensional q-state Potts model , 2004 .

[10]  A. Nihat Berker,et al.  Scaling for first-order phase transitions in thermodynamic and finite systems , 1982 .

[11]  Wolfhard Janke,et al.  Numerical tests of local scale invariance in ageing q-state Potts models , 2007 .

[12]  Li,et al.  Rigorous lower bound on the dynamic critical exponents of the Swendsen-Wang algorithm. , 1989, Physical review letters.

[13]  Wolfhard Janke Recent Developments in Monte Carlo Simulations of First-Order Phase Transitions , 1994 .

[14]  Hagen Kleinert,et al.  Gauge fields in condensed matter , 1989 .

[15]  Janke,et al.  Critical exponents of the classical three-dimensional Heisenberg model: A single-cluster Monte Carlo study. , 1993, Physical review. B, Condensed matter.

[16]  M. Fisher,et al.  Bounded and Inhomogeneous Ising Models. I. Specific-Heat Anomaly of a Finite Lattice , 1969 .

[17]  H. Stanley,et al.  Phase Transitions and Critical Phenomena , 2008 .

[18]  Martin Hasenbusch,et al.  Critical exponents of the 3D XY model from cluster update Monte Carlo , 1990 .

[19]  Thomas Neuhaus,et al.  2D Crystal Shapes, Droplet Condensation, and Exponential Slowing Down in Simulations of First-Order Phase Transitions , 2002 .

[20]  U. Wolff Comparison Between Cluster Monte Carlo Algorithms in the Ising Model , 1989 .

[21]  Sanford Weisberg,et al.  Computing science and statistics : proceedings of the 30th Symposium on the Interface, Minneapolis, Minnesota, May 13-16, 1998 : dimension reduction, computational complexity and information , 1998 .

[22]  H. Stanley,et al.  Introduction to Phase Transitions and Critical Phenomena , 1972 .

[23]  F. Y. Wu The Potts model , 1982 .

[24]  Alan M. Ferrenberg,et al.  Optimized Monte Carlo data analysis. , 1989, Physical Review Letters.

[25]  Chen Ning Yang,et al.  The Spontaneous Magnetization of a Two-Dimensional Ising Model , 1952 .

[26]  Nobuyasu Ito,et al.  Nonequilibrium Relaxation of Fluctuations of Physical Quantities , 2000 .

[27]  Wolfhard Janke,et al.  Nonlocal Monte Carlo algorithms for statistical physics applications , 1998 .

[28]  T. W. Anderson,et al.  Statistical analysis of time series , 1972 .

[29]  C. Fortuin,et al.  On the random-cluster model II. The percolation model , 1972 .

[30]  David J. Earl,et al.  Monte Carlo simulations. , 2008, Methods in molecular biology.

[31]  A. Fisher,et al.  The Theory of critical phenomena , 1992 .

[32]  D. B. Preston Spectral Analysis and Time Series , 1983 .

[33]  Martin Hasenbusch,et al.  Improved estimators for a cluster updating of O(n) spin models , 1990 .

[34]  C. Fortuin,et al.  On the random-cluster model: I. Introduction and relation to other models , 1972 .

[35]  Berg,et al.  Multicanonical ensemble: A new approach to simulate first-order phase transitions. , 1992, Physical review letters.

[36]  Alan M. Ferrenberg,et al.  Statistical and systematic errors in Monte Carlo sampling , 1991 .

[37]  N. B. Wilding Computer Simulation of Continuous Phase Transitions , 2003 .

[38]  Bernd A. Berg,et al.  Generalized ensemble simulations for complex systems , 2001, cond-mat/0110521.

[39]  Wolfhard Janke,et al.  MULTICANONICAL SIMULATION OF THE TWO-DIMENSIONAL 7-STATE POTTS MODEL , 1992 .

[40]  Pablo Tamayo Magnetization relaxation to equilibrium on large 2D Swendsen-Wang Ising models , 1993 .

[41]  Michael Creutz,et al.  Quantum Fields On The Computer , 1992 .

[42]  Wang,et al.  Nonuniversal critical dynamics in Monte Carlo simulations. , 1987, Physical review letters.

[43]  Response function of coarsening systems , 1999, cond-mat/9903091.

[44]  M. Slemrod,et al.  DYNAMICS OF FIRST ORDER PHASE TRANSITIONS , 1984 .

[45]  Wolff,et al.  Collective Monte Carlo updating for spin systems. , 1989, Physical review letters.

[46]  Gerard T. Barkema,et al.  Monte Carlo Methods in Statistical Physics , 1999 .

[47]  C. Chang,et al.  The Spontaneous Magnetization of a Two-Dimensional Rectangular Ising Model , 1952 .

[48]  G. Parisi,et al.  Simulated tempering: a new Monte Carlo scheme , 1992, hep-lat/9205018.

[49]  Malte Henkel,et al.  Conformal Invariance and Critical Phenomena , 1999 .

[50]  L. Onsager Crystal statistics. I. A two-dimensional model with an order-disorder transition , 1944 .

[51]  Wolfhard Janke,et al.  Multibondic cluster algorithm , 1994 .

[52]  H. Kleinert,et al.  Gauge Fields in Condensed Matter: Vol. 1: Superflow and Vortex Lines (Disorder Fields, Phase Transitions)Vol. 2: Stresses and Defects (Differential Geometry, Crystal Melting) , 1989 .

[53]  A. Sokal,et al.  The pivot algorithm: A highly efficient Monte Carlo method for the self-avoiding walk , 1988 .

[54]  Nobuyasu Ito,et al.  Non-equilibrium critical relaxation of the Wolff dynamics of the Ising model , 1993 .

[55]  Barry Simon,et al.  The statistical mechanics of lattice gases , 1993 .

[56]  On damage-spreading transitions , 1995, cond-mat/9508106.

[57]  Wolfhard Janke,et al.  Application of the multicanonical multigrid Monte Carlo method to the two-dimensional φ4: Autocorrelations and interface tension: Autocorrelations and interface tension , 1994 .

[58]  D. Heermann Computer Simulation Methods in Theoretical Physics , 1986 .

[59]  H. Nueberger Overrelaxation by reversible mode coupling , 1988 .

[60]  R. B. Potts Some generalized order-disorder transformations , 1952, Mathematical Proceedings of the Cambridge Philosophical Society.

[61]  On the connection between off-equilibrium response and statics in non disordered coarsening systems , 2001, cond-mat/0110651.

[62]  W. Janke Test of single cluster update for the three-dimensional XY model , 1990 .

[63]  B. McCoy,et al.  The Two-Dimensional Ising Model , 1973 .

[64]  Robert H. Swendsen,et al.  Erratum: ``New Monte Carlo technique for studying phase transitions'' [Phys. Rev. Lett. 61, 2635 (1988)] , 1989 .

[65]  J. M. Luck,et al.  Nonequilibrium critical dynamics of ferromagnetic spin systems , 2002 .

[66]  Janke,et al.  Multibondic cluster algorithm for Monte Carlo simulations of first-order phase transitions. , 1995, Physical review letters.

[67]  Kurt Binder,et al.  Monte Carlo Simulation in Statistical Physics , 1992, Graduate Texts in Physics.

[68]  Ulli Wolff,et al.  Collective Monte Carlo Updating in a High Precision Study of the X-y Model , 1989 .

[69]  A. Sokal,et al.  Exponential convergence to equilibrium for a class of random-walk models , 1989 .

[70]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[71]  J. Hammersley,et al.  Monte Carlo Methods , 1965 .

[72]  H. Gausterer,et al.  Computational Methods in Field Theory , 1992 .

[73]  F. Y. Wu Erratum: The Potts model , 1983 .

[74]  A. Lyubartsev,et al.  New approach to Monte Carlo calculation of the free energy: Method of expanded ensembles , 1992 .

[75]  M Henkel,et al.  Aging, phase ordering, and conformal invariance. , 2001, Physical review letters.

[76]  K. Binder,et al.  The Monte Carlo Method in Condensed Matter Physics , 1992 .

[77]  B. Efron The jackknife, the bootstrap, and other resampling plans , 1987 .

[78]  R. Baxter Exactly solved models in statistical mechanics , 1982 .

[79]  Anthony N. Burkitt,et al.  System size dependence of the autocorrelation time for the Swendsen-Wang Ising model , 1990 .

[80]  Malte Henkel,et al.  Two-time autocorrelation function in phase-ordering kinetics from local scale invariance , 2004 .

[81]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[82]  Wolfhard Janke,et al.  Dynamical Behavior of the Multibondic and Multicanonic Algorithm In The 3D q-State Potts Model , 1998 .

[83]  Malte Henkel Phenomenology of local scale invariance: from conformal invariance to dynamical scaling , 2002 .

[84]  W P Orrick,et al.  Critical behavior of the two-dimensional Ising susceptibility. , 2001, Physical review letters.

[85]  Janke,et al.  Accurate first-order transition points from finite-size data without power-law corrections. , 1993, Physical review. B, Condensed matter.

[86]  Vladimir Privman,et al.  Nonsymmetric first-order transitions: Finite-size scaling and tests for infinite-range models , 1990 .

[87]  Nightingale,et al.  Dynamic exponent of the two-dimensional Ising model and Monte Carlo computation of the subdominant eigenvalue of the stochastic matrix. , 1996, Physical review letters.

[88]  K. Hukushima,et al.  Exchange Monte Carlo Method and Application to Spin Glass Simulations , 1995, cond-mat/9512035.

[89]  Wolfhard Janke,et al.  Statistical Analysis of Simulations: Data Correlations and Error Estimation , 2002 .

[90]  R. Glauber Time‐Dependent Statistics of the Ising Model , 1963 .

[91]  Kurt Binder,et al.  Finite-size scaling at first-order phase transitions , 1984 .

[92]  Kurt Binder,et al.  Theory of first-order phase transitions , 1987 .

[93]  C. Borgs,et al.  A rigorous theory of finite-size scaling at first-order phase transitions , 1990 .

[94]  M. Müller,et al.  First order phase transitions in Ce3Rh4Sn13 , 2008 .

[95]  Vladimir Privman,et al.  Finite-size effects at first-order transitions , 1983 .

[96]  Alan M. Ferrenberg,et al.  New Monte Carlo technique for studying phase transitions. , 1988, Physical review letters.

[97]  Lee,et al.  New numerical method to study phase transitions. , 1990, Physical review letters.

[98]  Beale Exact distribution of energies in the two-dimensional ising model. , 1996, Physical review letters.

[99]  Clive F. Baillie,et al.  LATTICE SPIN MODELS AND NEW ALGORITHMS — A REVIEW OF MONTE CARLO COMPUTER SIMULATIONS , 1990 .

[100]  Fox,et al.  Phase transition in the 2D XY model. , 1988, Physical review letters.

[101]  Malte Henkel,et al.  Scaling of the magnetic linear response in phase-ordering kinetics , 2002, cond-mat/0211583.

[102]  Wolfhard Janke,et al.  Multicanonical Monte Carlo simulations , 1998 .

[103]  Wolfhard Janke,et al.  Monte Carlo study of the scaling of universal correlation lengths in three-dimensional O ( n ) spin models , 2000 .

[104]  B. Kaufman Crystal Statistics: II. Partition Function Evaluated by Spinor Analysis. III. Short-Range Order in a Binary Ising Lattice. , 1949 .

[105]  B. Berg,et al.  Multicanonical algorithms for first order phase transitions , 1991 .

[106]  Rupert G. Miller The jackknife-a review , 1974 .