On the computation of the Cramer-Rao bound for ARMA parameter estimation

The Cramer-Rao lower bound (CRLB) provides a useful tool for evaluating the performance of parameter estimation techniques. Several techniques for the computation of the asymptotic form of the CRLB for ARMA models are presented. It is shown that the asymptotic CRLB can be expressed as an explicit function of the model parameters.

[1]  M. Pagano Estimation of Models of Autoregressive Signal Plus White Noise , 1974 .

[2]  Martin Morf,et al.  Efficient construction of canonical ladder forms for vector autoregressive processes , 1982 .

[3]  P. Whittle The Analysis of Multiple Stationary Time Series , 1953 .

[4]  L. Ljung,et al.  New inversion formulas for matrices classified in terms of their distance from Toeplitz matrices , 1979 .

[5]  D. Dzung,et al.  Generation of cross-covariance sequences , 1981 .

[6]  Karl Johan Åström,et al.  On the Achievable Accuracy in Identification Problems , 1967 .

[7]  E. Jury,et al.  A note on the evaluation of complex integrals using filtering interpretations , 1982 .

[8]  Efficient computation of the covariance sequence of an autoregressive process , 1983 .

[9]  T. W. Parks,et al.  Efficient solution of a Toeplitz-plus-Hankel coefficient matrix system of equations , 1980 .

[10]  L. Scharf,et al.  Statistical design of autoregressive-moving average digital filters , 1979 .

[11]  A. A. Beex,et al.  Generating covariance sequences and the calculation of quantization and rounding error variances in digital filters , 1980 .

[12]  B. Friedlander A lattice algorithm for factoring the spectrum of a moving average process , 1983 .

[13]  M. Morf,et al.  Inverses of Toeplitz operators, innovations, and orthogonal polynomials , 1975, 1975 IEEE Conference on Decision and Control including the 14th Symposium on Adaptive Processes.

[14]  B. Friedlander System identification techniques for adaptive signal processing , 1982 .

[15]  R. Roberts,et al.  The use of second-order information in the approximation of discreate-time linear systems , 1976 .