Stability properties of regenerative cutting processes, based on impulse response functions expressed in the impulse dynamic subspace

Abstract An extensive study on the implementation of the convolution based impulse dynamic subspace (IDS) concept for machining applications is presented in this paper. The suggested method is adequate to avoid modeling based on modal parameters. Instead of parameter driven dynamical modeling, the impulse response functions (IRFs) are used for the IDS decomposition and for constructing the corresponding delayed and, on occasion, time periodic equations of motion of regenerative cutting processes. This approach makes possible to use measured frequency response functions (FRFs) in time domain based methods. This is achieved by establishing the connection between the IRF and the fundamental matrix of the corresponding linearized generally time periodic delayed system. It is shown that the concept provides the well-known analytic solution of the orthogonal turning model, demonstrating the applicability of the proposed methodology, while a specially tailored high-order semidiscretization scheme is tested on milling models.

[1]  Gábor Stépán,et al.  Semi-Discretization for Time-Delay Systems: Stability and Engineering Applications , 2011 .

[2]  T. Schmitz,et al.  Closed-form solutions for surface location error in milling , 2006 .

[3]  Yusuf Altintas,et al.  Virtual CNC system. Part I. System architecture , 2006 .

[4]  Jokin Munoa,et al.  Control laws for chatter suppression in milling using an inertial actuator , 2010 .

[5]  R. E. Wilson,et al.  Estimates of the bistable region in metal cutting , 2008, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[6]  Y. G. Tsuei,et al.  Complex Mode Indication Function and its Applications to Spatial Domain Parameter Estimation , 1988 .

[7]  B. Mann,et al.  Stability of Interrupted Cutting by Temporal Finite Element Analysis , 2003 .

[8]  John McPhee,et al.  In-process digital twin estimation for high-performance machine tools with coupled multibody dynamics , 2020 .

[9]  Tamás Insperger,et al.  Full-discretization and semi-discretization for milling stability prediction: Some comments , 2010 .

[10]  Miklós Farkas,et al.  Periodic Motions , 1994 .

[11]  Yusuf Altintas,et al.  Manufacturing Automation: Metal Cutting Mechanics, Machine Tool Vibrations, and CNC Design , 2000 .

[12]  Erhan Budak,et al.  An Analytical Design Method for Milling Cutters With Nonconstant Pitch to Increase Stability, Part 2: Application , 2003 .

[13]  Zoltan Dombovari,et al.  On the bistable zone of milling processes , 2015, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[14]  J. Tlusty,et al.  Basic Non-Linearity in Machining Chatter , 1981 .

[15]  Gábor Stépán,et al.  Improved prediction of stability lobes with extended multi frequency solution , 2013 .

[16]  Tamás Kalmár-Nagy,et al.  Subcritical Hopf Bifurcation in the Delay Equation Model for Machine Tool Vibrations , 2001 .

[17]  Z. Dombovari,et al.  Experimental Study on Free Vibratory Behavior of Nonlinear Structure , 2019, Periodica Polytechnica Mechanical Engineering.

[18]  Steffen Ihlenfeldt,et al.  Stability of milling with non-uniform pitch and variable helix Tools , 2017 .

[19]  David J. Ewins,et al.  Modal Testing: Theory, Practice, And Application , 2000 .

[20]  Paul Valckenaers and Handrik Van Brussel Design for the Unexpected : From Holonic Manufacturing Systems Towards A Humane Mechatronics Society - 978-0-12-803662-4 , 2015 .

[21]  Gábor Stépán,et al.  On the higher-order semi-discretizations for periodic delayed systems , 2008 .

[22]  Zoltan Dombovari,et al.  INTERACTION BETWEEN MULTIPLE MODES IN MILLING PROCESSES , 2013 .

[23]  Hisayoshi Sato,et al.  Behavior of Self-Excited Chatter Due to Multiple Regenerative Effect , 1981 .

[24]  Alex Iglesias,et al.  Optimum Selection of Variable Pitch for Chatter Suppression in Face Milling Operations , 2018, Materials.

[25]  Pankaj Wahi,et al.  Self-interrupted regenerative metal cutting in turning , 2008 .

[26]  Yusuf Altintas,et al.  Analytical Prediction of Chatter Stability in Milling—Part I: General Formulation , 1998 .

[27]  Gábor Stépán,et al.  Regenerative delay, parametric forcing and machine tool chatter: A review , 2015 .

[28]  Randall J. Allemang,et al.  Autonomous Modal Parameter Estimation: Application Examples , 2011 .

[29]  Zoltan Dombovari,et al.  The Basics of Time-Domain-Based Milling Stability Prediction Using Frequency Response Function , 2020 .

[30]  Yusuf Altintas,et al.  Analytical Prediction of Stability Lobes in Milling , 1995 .

[31]  W. Rugh Nonlinear System Theory: The Volterra / Wiener Approach , 1981 .

[32]  Yusuf Altintas,et al.  Chatter Stability of General Turning Operations With Process Damping , 2009 .

[33]  Bernd Krauskopf,et al.  Periodic solutions and their bifurcations in a non-smooth second-order delay differential equation , 2006 .

[34]  Gábor Stépán,et al.  Global dynamics of low immersion high-speed milling. , 2004, Chaos.

[35]  Daniel Rixen,et al.  A modified Ibrahim time domain algorithm for operational modal analysis including harmonic excitation , 2004 .

[36]  Randall J. Allemang,et al.  Autonomous Modal Parameter Estimation: Methodology , 2011 .

[37]  Zoltan Dombovari,et al.  Dominant modal decomposition method , 2017 .

[38]  Mahdi Eynian,et al.  In-process identification of modal parameters using dimensionless relationships in milling chatter , 2019, International Journal of Machine Tools and Manufacture.

[39]  Gábor Stépán,et al.  Semi‐discretization method for delayed systems , 2002 .

[40]  Alex Iglesias,et al.  Active suppression of structural chatter vibrations using machine drives and accelerometers , 2015 .

[41]  Gábor Stépán,et al.  Symmetry breaking in milling dynamics , 2019, International Journal of Machine Tools and Manufacture.

[42]  Yusuf Altintas,et al.  Multi frequency solution of chatter stability for low immersion milling , 2004 .

[43]  J. Hale Theory of Functional Differential Equations , 1977 .

[44]  Soundar R. T. Kumara,et al.  Cyber-physical systems in manufacturing , 2016 .

[45]  Dénes Takács,et al.  Ultimate capability of variable pitch milling cutters , 2018 .

[46]  S. A. Tobias Machine-tool vibration , 1965 .

[47]  Alex Iglesias,et al.  Prediction of multiple dominant chatter frequencies in milling processes , 2011 .

[48]  Gábor Stépán,et al.  On stability prediction for milling , 2005 .

[49]  Zoltan Dombovari,et al.  Stability analysis of milling with irregular pitch tools by the implicit subspace iteration method , 2014 .

[50]  Tamás Insperger,et al.  A pseudospectral tau approximation for time delay systems and its comparison with other weighted‐residual‐type methods , 2016 .

[51]  Erhan Budak,et al.  An analytical design method for milling cutters with nonconstant pitch to increase stability, Part I: Theory , 2003 .

[52]  S. R. Ibrahim,et al.  Modal confidence factor in vibration testing , 1978 .

[53]  Tamás Insperger,et al.  Analysis of directional factors in milling: importance of multi-frequency calculation and of the inclusion of the effect of the helix angle , 2010 .

[54]  Mark Richardson,et al.  PARAMETER ESTIMATION FROM FREQUENCY RESPONSE MEASUREMENTS USING RATIONAL FRACTION POLYNOMIALS (TWENTY YEARS OF PROGRESS) , 1982 .