Stabilizing Integrators for Real-Time Physics

We present a new time integration method featuring excellent stability and energy conservation properties, making it particularly suitable for real-time physics. The commonly used backward Euler method is stable but introduces artificial damping. Methods such as implicit midpoint do not suffer from artificial damping but are unstable in many common simulation scenarios. We propose an algorithm that blends between the implicit midpoint and forward/backward Euler integrators such that the resulting simulation is stable while introducing only minimal artificial damping. We achieve this by tracking the total energy of the simulated system, taking into account energy-changing events: damping and forcing. To facilitate real-time simulations, we propose a local/global solver, similar to Projective Dynamics, as an alternative to Newton’s method. Compared to the original Projective Dynamics, which is derived from backward Euler, our final method introduces much less numerical damping at the cost of minimal computing overhead. Stability guarantees of our method are derived from the stability of backward Euler, whose stability is a widely accepted empirical fact. However, to our knowledge, theoretical guarantees have so far only been proven for linear ODEs. We provide preliminary theoretical results proving the stability of backward Euler also for certain cases of nonlinear potential functions.

[1]  G. Akrivis A First Course In The Numerical Analysis Of Differential Equations [Book News & Reviews] , 1998, IEEE Computational Science and Engineering.

[2]  Jernej Barbic,et al.  FEM simulation of 3D deformable solids: a practitioner's guide to theory, discretization and model reduction , 2012, SIGGRAPH '12.

[3]  Nathan M. Newmark,et al.  A Method of Computation for Structural Dynamics , 1959 .

[4]  James F. O'Brien,et al.  Adaptive anisotropic remeshing for cloth simulation , 2012, ACM Trans. Graph..

[5]  E. Hairer,et al.  Geometric Numerical Integration: Structure Preserving Algorithms for Ordinary Differential Equations , 2004 .

[6]  James F. O'Brien,et al.  Fast simulation of mass-spring systems , 2013, ACM Trans. Graph..

[7]  Andrew P. Witkin,et al.  Large steps in cloth simulation , 1998, SIGGRAPH.

[8]  DOMINIK L. MICHELS,et al.  Exponential integrators for stiff elastodynamic problems , 2014, ACM Trans. Graph..

[9]  K. Strehmel Dekker, K.; Verwer, J. G., Stability of Runge-Kutta Methods for Stiff Nonlinear Differential Equations., Amsterdam-New York, North-Holland 1984. X, 308 S., US $ 36.50. Dfl. 95.00. ISBN 0-444-87634-0 (CWI Monographs 2) , 1987 .

[10]  J. Verwer,et al.  Stability of Runge-Kutta Methods for Stiff Nonlinear Differential Equations , 1984 .

[11]  Donald Greenspan,et al.  Energy and momentum conserving methods of arbitrary order for the numerical integration of equations of motion , 1975 .

[12]  Tiantian Liu,et al.  Towards Real-time Simulation of Hyperelastic Materials , 2016, ArXiv.

[13]  John C. Platt,et al.  Elastically deformable models , 1987, SIGGRAPH.

[14]  Mathieu Desbrun,et al.  A semi-analytical approach to molecular dynamics , 2015, J. Comput. Phys..

[15]  Yijing Li,et al.  Asynchronous implicit backward Euler integration , 2016, Symposium on Computer Animation.

[16]  Matthias Müller,et al.  Hierarchical Position Based Dynamics , 2008, VRIPHYS.

[17]  Jernej Barbic,et al.  Vega: Non‐Linear FEM Deformable Object Simulator , 2013, Comput. Graph. Forum.

[18]  Ronald Fedkiw,et al.  Robust treatment of collisions, contact and friction for cloth animation , 2002, SIGGRAPH Courses.

[19]  A. Peirce Computer Methods in Applied Mechanics and Engineering , 2010 .

[20]  Demetri Terzopoulos,et al.  Modeling inelastic deformation: viscolelasticity, plasticity, fracture , 1988, SIGGRAPH.

[21]  Jan Bender,et al.  Position-based simulation of continuous materials , 2014, Comput. Graph..

[22]  Kwang-Jin Choi,et al.  Stable but responsive cloth , 2002, SIGGRAPH Courses.

[23]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[24]  J. Marsden,et al.  Asynchronous Variational Integrators , 2003 .

[25]  M. Leok Variational Integrators , 2012 .

[26]  Arieh Iserles A First Course in the Numerical Analysis of Differential Equations: Ordinary differential equations , 2008 .

[27]  Mathieu Desbrun,et al.  Discrete geometric mechanics for variational time integrators , 2006, SIGGRAPH Courses.

[28]  Tae-Yong Kim,et al.  Air meshes for robust collision handling , 2015, ACM Trans. Graph..

[29]  Eftychios Sifakis,et al.  Fast and Robust Inversion‐Free Shape Manipulation , 2016, Comput. Graph. Forum.

[30]  Tae-Yong Kim,et al.  Strain based dynamics , 2014, SCA '14.

[31]  Tae-Yong Kim,et al.  Unified particle physics for real-time applications , 2014, ACM Trans. Graph..

[32]  Matthias Müller,et al.  Position based dynamics , 2007, J. Vis. Commun. Image Represent..

[33]  J. C. Simo,et al.  Exact energy-momentum conserving algorithms and symplectic schemes for nonlinear dynamics , 1992 .

[34]  Miles Macklin,et al.  Position based fluids , 2013, ACM Trans. Graph..

[35]  Mark Pauly,et al.  Projective dynamics , 2014, ACM Trans. Graph..

[36]  J. Marsden,et al.  Lie-Poisson Hamilton-Jacobi theory and Lie-Poisson integrators , 1988 .

[37]  J. Lambert Numerical Methods for Ordinary Differential Systems: The Initial Value Problem , 1991 .

[38]  Uri M. Ascher,et al.  Computer methods for ordinary differential equations and differential-algebraic equations , 1998 .

[39]  M. Crisfield,et al.  Energy‐conserving and decaying Algorithms in non‐linear structural dynamics , 1999 .

[40]  Jintai Chung,et al.  A Time Integration Algorithm for Structural Dynamics With Improved Numerical Dissipation: The Generalized-α Method , 1993 .

[41]  E. Hairer Long-time energy conservation of numerical integrators , 2006 .

[42]  Huamin Wang,et al.  A chebyshev semi-iterative approach for accelerating projective and position-based dynamics , 2015, ACM Trans. Graph..

[43]  Robert W. Easton,et al.  Geometric methods for discrete dynamical systems , 1998 .

[44]  Miguel A. Otaduy,et al.  A Survey on Position‐Based Simulation Methods in Computer Graphics , 2014, Comput. Graph. Forum.

[45]  J. Marsden,et al.  Variational Integrators and the Newmark Algorithm for Conservative and Dissipative Mechanical Systems , 2000 .

[46]  Demetri Terzopoulos,et al.  Deformable models , 2000, The Visual Computer.

[47]  Ronald Fedkiw,et al.  Energy Conservation for the Simulation of Deformable Bodies , 2012 .

[48]  Eitan Grinspun,et al.  Asynchronous contact mechanics , 2009, ACM Trans. Graph..

[49]  Andreas Weber,et al.  Stable Integration of the Dynamic Cosserat Equations with Application to Hair Modeling , 2008, J. WSCG.

[50]  J. C. Simo,et al.  On the stability of symplectic and energy-momentum algorithms for non-linear Hamiltonian systems with symmetry , 1996 .

[51]  Jerrold E. Marsden,et al.  Geometric, variational integrators for computer animation , 2006, SCA '06.

[52]  Jerrold E. Marsden,et al.  Variational integrators, the Newmark scheme, and dissipative systems , 2000 .

[53]  Wolfgang Straßer,et al.  Asynchronous Cloth Simulation , 2008 .

[54]  Robert D. Skeel,et al.  Monitoring energy drift with shadow Hamiltonians , 2005 .

[55]  Rahul Narain,et al.  ADMM ⊇ projective dynamics: fast simulation of general constitutive models , 2016, Symposium on Computer Animation.

[56]  Craig Schroeder,et al.  Optimization Integrator for Large Time Steps , 2014, IEEE Transactions on Visualization and Computer Graphics.

[57]  Eitan Grinspun,et al.  Speculative parallel asynchronous contact mechanics , 2012, ACM Trans. Graph..

[58]  Peter Schröder,et al.  A simple geometric model for elastic deformations , 2010, ACM Trans. Graph..

[59]  Thomas J. R. Hughes,et al.  FINITE-ELEMENT METHODS FOR NONLINEAR ELASTODYNAMICS WHICH CONSERVE ENERGY. , 1978 .

[60]  J. Marsden,et al.  Symplectic-energy-momentum preserving variational integrators , 1999 .

[61]  Jos Stam,et al.  Nucleus: Towards a unified dynamics solver for computer graphics , 2009, 2009 11th IEEE International Conference on Computer-Aided Design and Computer Graphics.

[62]  Huamin Wang,et al.  Multi-resolution isotropic strain limiting , 2010, ACM Trans. Graph..

[63]  Andrew Selle,et al.  Efficient elasticity for character skinning with contact and collisions , 2011, SIGGRAPH 2011.

[64]  Uri M. Ascher,et al.  The Midpoint Scheme and Variants for Hamiltonian Systems: Advantages and Pitfalls , 1999, SIAM J. Sci. Comput..

[65]  Nuttapong Chentanez,et al.  Long range attachments - a method to simulate inextensible clothing in computer games , 2012, SCA '12.