Fast counting with tensor networks

We introduce tensor network contraction algorithms for counting satisfying assignments of constraint satisfaction problems (#CSPs). We represent each arbitrary #CSP formula as a tensor network, whose full contraction yields the number of satisfying assignments of that formula, and use graph theoretical methods to determine favorable orders of contraction. We employ our heuristics for the solution of #P-hard counting boolean satisfiability (#SAT) problems, namely monotone #1-in-3SAT and #Cubic-Vertex-Cover, and find that they outperform state-of-the-art solvers by a significant margin.

[1]  Michael T. Goodrich,et al.  Planar Separators and Parallel Polygon Triangulation , 1995, J. Comput. Syst. Sci..

[2]  Z. Y. Xie,et al.  Coarse-graining renormalization by higher-order singular value decomposition , 2012, 1201.1144.

[3]  Clement Delcamp,et al.  Renormalization of tensor networks using graph independent local truncations , 2017, 1709.07460.

[4]  Pierre Marquis,et al.  A Knowledge Compilation Map , 2002, J. Artif. Intell. Res..

[5]  Kent Quanrud,et al.  Approximation Algorithms for Polynomial-Expansion and Low-Density Graphs , 2015, ESA.

[6]  Andrzej Cichocki,et al.  Tensor Networks for Dimensionality Reduction and Large-scale Optimization: Part 1 Low-Rank Tensor Decompositions , 2016, Found. Trends Mach. Learn..

[7]  F. Verstraete,et al.  Matrix product states, projected entangled pair states, and variational renormalization group methods for quantum spin systems , 2008, 0907.2796.

[8]  M E J Newman,et al.  Community structure in social and biological networks , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[9]  Russell Impagliazzo,et al.  Complexity of k-SAT , 1999, Proceedings. Fourteenth Annual IEEE Conference on Computational Complexity (Formerly: Structure in Complexity Theory Conference) (Cat.No.99CB36317).

[10]  P. W. Kasteleyn The statistics of dimers on a lattice: I. The number of dimer arrangements on a quadratic lattice , 1961 .

[11]  Moshe Y. Vardi,et al.  Quantum-inspired Boolean states for bounding engineering network reliability assessment , 2018, Structural Safety.

[12]  J. Eisert,et al.  Area laws for the entanglement entropy - a review , 2008, 0808.3773.

[13]  Richard E. Ladner,et al.  On the Structure of Polynomial Time Reducibility , 1975, JACM.

[14]  Bernd Bischl,et al.  ASlib: A benchmark library for algorithm selection , 2015, Artif. Intell..

[15]  Riccardo Zecchina,et al.  Constraint Satisfaction by Survey Propagation , 2002, Computational Complexity and Statistical Physics.

[16]  Magnus Bordewich,et al.  On the Approximation Complexity Hierarchy , 2010, WAOA.

[17]  Leslie G. Valiant,et al.  Holographic Algorithms (Extended Abstract) , 2004, FOCS.

[18]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[19]  Jean Cardinal,et al.  Solving and Sampling with Many Solutions: Satisfiability and Other Hard Problems , 2017, IPEC.

[20]  Fedor V. Fomin,et al.  Exact exponential algorithms , 2013, CACM.

[21]  P. W. Kasteleyn The Statistics of Dimers on a Lattice , 1961 .

[22]  W. Marsden I and J , 2012 .

[23]  L. Zdeborová,et al.  Phase diagram of the 1-in-3 satisfiability problem. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[24]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[25]  John M. Lewis,et al.  The Node-Deletion Problem for Hereditary Properties is NP-Complete , 1980, J. Comput. Syst. Sci..

[26]  CichockiAndrzej,et al.  Tensor Networks for Dimensionality Reduction and Large-scale Optimization , 2016 .

[27]  Cristopher Moore,et al.  The phase transition in 1-in-k SAT and NAE 3-SAT , 2001, SODA '01.

[28]  M. Mézard,et al.  Analytic and Algorithmic Solution of Random Satisfiability Problems , 2002, Science.

[29]  C. Ross Found , 1869, The Dental register.

[30]  Thomas J. Schaefer,et al.  The complexity of satisfiability problems , 1978, STOC.

[31]  Umut Oztok,et al.  A Top-Down Compiler for Sentential Decision Diagrams , 2015, IJCAI.

[32]  Jean-Marie Lagniez,et al.  An Improved Decision-DNNF Compiler , 2017, IJCAI.

[33]  F. Verstraete,et al.  Renormalization Group Flows of Hamiltonians Using Tensor Networks. , 2017, Physical review letters.

[34]  Mason A. Porter,et al.  Communities in Networks , 2009, ArXiv.

[35]  T. Xiang,et al.  Accurate determination of tensor network state of quantum lattice models in two dimensions. , 2008, Physical review letters.

[36]  Santo Fortunato,et al.  Community detection in graphs , 2009, ArXiv.

[37]  Michael Levin,et al.  Tensor renormalization group approach to two-dimensional classical lattice models. , 2006, Physical review letters.

[38]  Riccardo Zecchina,et al.  Survey propagation: An algorithm for satisfiability , 2002, Random Struct. Algorithms.

[39]  Marc Thurley,et al.  sharpSAT - Counting Models with Advanced Component Caching and Implicit BCP , 2006, SAT.

[40]  Jason Morton,et al.  Tensor Network Contractions for #SAT , 2014, Journal of Statistical Physics.

[41]  Jin-Yi Cai,et al.  On the Theory of Matchgate Computations , 2007, Twenty-Second Annual IEEE Conference on Computational Complexity (CCC'07).

[42]  Mihalis Yannakakis,et al.  Edge-Deletion Problems , 1981, SIAM J. Comput..

[43]  Glen Evenbly,et al.  Algorithms for tensor network renormalization , 2015, 1509.07484.

[44]  Takehide Soh,et al.  Implementing Efficient All Solutions SAT Solvers , 2015, ACM J. Exp. Algorithmics.

[45]  D. Welsh,et al.  On the computational complexity of the Jones and Tutte polynomials , 1990, Mathematical Proceedings of the Cambridge Philosophical Society.

[46]  Xiao-Gang Wen,et al.  Tensor-Entanglement-Filtering Renormalization Approach and Symmetry Protected Topological Order , 2009, 0903.1069.

[47]  S. Bravyi Contraction of matchgate tensor networks on non-planar graphs , 2008, 0801.2989.

[48]  José Ignacio Latorre,et al.  An exact tensor network for the 3SAT problem , 2011, Quantum Inf. Comput..

[49]  R. Tarjan,et al.  A Separator Theorem for Planar Graphs , 1977 .

[50]  S. Kourtis,et al.  Evaluating the Jones polynomial with tensor networks. , 2018, Physical review. E.

[51]  G. Vidal,et al.  Exact entanglement renormalization for string-net models , 2008, 0806.4583.

[52]  J. Eisert,et al.  Colloquium: Area laws for the entanglement entropy , 2010 .

[53]  Jean-Marie Lagniez,et al.  Knowledge Compilation for Model Counting: Affine Decision Trees , 2013, IJCAI.

[54]  Vipin Kumar,et al.  A Fast and High Quality Multilevel Scheme for Partitioning Irregular Graphs , 1998, SIAM J. Sci. Comput..

[55]  Catherine S. Greenhill The complexity of counting colourings and independent sets in sparse graphs and hypergraphs , 2000, computational complexity.

[56]  G. Vidal,et al.  Classical simulation of quantum many-body systems with a tree tensor network , 2005, quant-ph/0511070.

[57]  Jin-Yi Cai,et al.  Valiant's Holant Theorem and Matchgate Tensors , 2006, TAMC.

[58]  John R Gilbert,et al.  A Separator Theorem for Graphs of Bounded Genus , 1984, J. Algorithms.

[59]  Masatoshi Imada,et al.  Tensor network algorithm by coarse-graining tensor renormalization on finite periodic lattices , 2015, 1510.03333.

[60]  Pierre McKenzie,et al.  The complexity of tensor calculus , 2002, computational complexity.

[61]  Henry A. Kautz,et al.  Heuristics for Fast Exact Model Counting , 2005, SAT.

[62]  Donald W. Loveland,et al.  A machine program for theorem-proving , 2011, CACM.

[63]  Roberto J. Bayardo,et al.  Counting Models Using Connected Components , 2000, AAAI/IAAI.

[64]  J. Biamonte,et al.  Tensor Networks in a Nutshell , 2017, 1708.00006.

[65]  Alan K. Mackworth Constraint Satisfaction , 1985 .

[66]  B. M. Fulk MATH , 1992 .

[67]  G. Vidal,et al.  Entanglement renormalization and topological order. , 2007, Physical review letters.

[68]  Petr A. Golovach,et al.  Parameterized Complexity of Two Edge Contraction Problems with Degree Constraints , 2013, IPEC.

[69]  J. D. Biamonte,et al.  Algebraically contractible topological tensor network states , 2011, 1108.0888.

[70]  Shuo Yang,et al.  Loop Optimization for Tensor Network Renormalization. , 2015, Physical review letters.

[71]  A. Levine,et al.  New estimates of the storage permanence and ocean co-benefits of enhanced rock weathering , 2023, PNAS nexus.

[72]  P. W. Kasteleyn Dimer Statistics and Phase Transitions , 1963 .

[73]  Lenka Zdeborová,et al.  Constraint satisfaction problems with isolated solutions are hard , 2008, ArXiv.

[74]  Peter Sanders,et al.  Recent Advances in Graph Partitioning , 2013, Algorithm Engineering.

[75]  Krzysztof Diks,et al.  Edge Separators of Planar and Outerplanar Graphs with Applications , 1993, J. Algorithms.

[76]  John F. Stanton,et al.  A massively parallel tensor contraction framework for coupled-cluster computations , 2014, J. Parallel Distributed Comput..

[77]  G. Evenbly,et al.  Tensor Network Renormalization. , 2014, Physical review letters.

[78]  E. Mucciolo,et al.  Tensor network method for reversible classical computation. , 2018, Physical review. E.

[79]  Roman Orus,et al.  A Practical Introduction to Tensor Networks: Matrix Product States and Projected Entangled Pair States , 2013, 1306.2164.

[80]  M. Fisher,et al.  Dimer problem in statistical mechanics-an exact result , 1961 .

[81]  Kevin Leyton-Brown,et al.  SATzilla: Portfolio-based Algorithm Selection for SAT , 2008, J. Artif. Intell. Res..

[82]  M. Mézard,et al.  Survey propagation: An algorithm for satisfiability , 2005 .

[83]  Matthieu Latapy,et al.  Efficient and simple generation of random simple connected graphs with prescribed degree sequence , 2005, J. Complex Networks.

[84]  Ericka Stricklin-Parker,et al.  Ann , 2005 .

[85]  Igor L. Markov,et al.  Simulating Quantum Computation by Contracting Tensor Networks , 2008, SIAM J. Comput..

[86]  Masashi Sugiyama,et al.  Tensor Networks for Dimensionality Reduction and Large-scale Optimization: Part 2 Applications and Future Perspectives , 2017, Found. Trends Mach. Learn..