KP integrability of triple Hodge integrals. III. Cut-and-join description, KdV reduction, and topological recursions

In this paper, we continue our investigation of the triple Hodge integrals satisfying the Calabi–Yau condition. For the tau-functions, which generate these integrals, we derive the complete families of the Heisenberg–Virasoro constraints. We also construct several equivalent versions of the cut-and-join operators. These operators describe the algebraic version of topological recursion. For the specific values of parameters associated with the KdV reduction, we prove that these tau-functions are equal to the generating functions of intersection numbers of ψ and κ classes. We interpret this relation as a symplectic invariance of the Chekhov–Eynard–Orantin topological recursion and prove this recursion for the general Θ-case.

[1]  B. Eynard,et al.  Invariants of algebraic curves and topological expansion , 2007, math-ph/0702045.

[2]  B. M. Fulk MATH , 1992 .

[3]  H. Verlinde,et al.  Loop equations and Virasoro con - straints in nonperturbative two - dimensional quantum gravity , 1991 .

[4]  B. Eynard,et al.  The Laplace transform of the cut-and-join equation and the Bouchard-Marino conjecture on Hurwitz numbers , 2009, 0907.5224.

[5]  S. Crawford,et al.  Volume 1 , 2012, Journal of Diabetes Investigation.

[6]  A. Alexandrov My title , 2011 .

[7]  H. Kawai,et al.  CONTINUUM SCHWINGER-DYSON EQUATIONS AND UNIVERSAL STRUCTURES IN TWO-DIMENSIONAL QUANTUM GRAVITY , 1991 .

[8]  G. Semenoff,et al.  UNITARY MATRIX INTEGRALS IN THE FRAMEWORK OF THE GENERALIZED KONTSEVICH MODEL , 1996 .

[9]  Norman Do,et al.  Topological recursion on the Bessel curve , 2016, 1608.02781.

[10]  P. Dunin-Barkowski,et al.  Identification of the Givental Formula with the Spectral Curve Topological Recursion Procedure , 2012, 1211.4021.

[11]  A. Morozov,et al.  Generation of matrix models by Ŵ-operators , 2009 .

[12]  Jian Zhou Local Mirror Symmetry for One-Legged Topological Vertex , 2009, 0910.4320.

[13]  A mathematical theory of the topological vertex , 2004, math/0408426.

[14]  V. Bouchard,et al.  Higher Airy structures, W algebras and topological recursion , 2018, 1812.08738.

[15]  A. Alexandrov Open intersection numbers and free fields , 2016, 1606.06712.

[16]  H. Kawai,et al.  Infinite dimensional Grassmannian structure of two-dimensional quantum gravity , 1992 .

[17]  David Mumford,et al.  Towards an Enumerative Geometry of the Moduli Space of Curves , 1983 .

[18]  A. Alexandrov KP integrability of triple Hodge integrals. II. Generalized Kontsevich matrix model , 2020, 2009.10961.

[19]  Y. Manin,et al.  Invertible cohomological field theories and Weil-Petersson volumes , 1999, math/9902051.

[20]  Fermionic Approach to Weighted Hurwitz Numbers and Topological Recursion , 2017, 1706.00958.

[21]  C. Teleman The structure of 2D semi-simple field theories , 2007, Inventiones mathematicae.

[22]  Paul T. Norbury,et al.  Topological recursion with hard edges , 2017, International Journal of Mathematics.

[24]  G. Fitzgerald,et al.  'I. , 2019, Australian journal of primary health.

[25]  Miss A.O. Penney (b) , 1974, The New Yale Book of Quotations.

[26]  A. Hock,et al.  A Laplacian to compute intersection numbers on M g , n and correlation functions in NCQFT , 2019 .

[27]  N. J. A. Sloane,et al.  The On-Line Encyclopedia of Integer Sequences , 2003, Electron. J. Comb..

[28]  C. Vafa,et al.  The Topological Vertex , 2003, hep-th/0305132.

[29]  A. Alexandrov Cut-and-join description of generalized Brezin-Gross-Witten model , 2016, 1608.01627.

[30]  R. Pandharipande,et al.  Localization of virtual classes , 1997, alg-geom/9708001.

[31]  V. Bouchard,et al.  Hurwitz numbers, matrix models and enumerative geometry , 2007, 0709.1458.

[32]  M. Kazarian,et al.  KP hierarchy for Hodge integrals , 2008, 0809.3263.

[33]  Shuai Guo,et al.  Virasoro constraints and polynomial recursion for the linear Hodge integrals , 2016, 1608.02077.

[34]  B. Dubrovin,et al.  Hodge–GUE Correspondence and the Discrete KdV Equation , 2016, Communications in Mathematical Physics.

[35]  P. Norbury Enumerative geometry via the moduli space of super Riemann surfaces , 2020, 2005.04378.

[36]  P. Norbury A new cohomology class on the moduli space of curves , 2017, 1712.03662.

[37]  Maxim Kontsevich,et al.  Intersection theory on the moduli space of curves and the matrix airy function , 1992 .

[38]  R. Pandharipande,et al.  Hodge integrals and Gromov-Witten theory , 1998 .

[39]  Edward Witten,et al.  Two-dimensional gravity and intersection theory on moduli space , 1990 .

[40]  A. Alexandrov CUT-AND-JOIN OPERATOR REPRESENTATION FOR KONTSEVICH–WITTEN TAU-FUNCTION , 2010, 1009.4887.

[41]  Jian Zhou Solution of W-Constraints for R-Spin Intersection Numbers , 2013, 1305.6991.

[42]  A. Mironov,et al.  Matrix model partition function by a single constraint , 2021, The European Physical Journal C.

[43]  I. Goulden,et al.  Transitive factorisations into transpositions and holomorphic mappings on the sphere , 1997 .

[44]  Reinier Kramer,et al.  KP hierarchy for Hurwitz-type cohomological field theories , 2021, Communications in Number Theory and Physics.

[45]  P. Norbury Gromov-Witten invariants of P1 coupled to a KdV tau function , 2022, Advances in Mathematics.