A Type-2 Block-Component-Decomposition Based 2D AOA Estimation Algorithm for an Electromagnetic Vector Sensor Array

This paper investigates a two-dimensional angle of arrival (2D AOA) estimation algorithm for the electromagnetic vector sensor (EMVS) array based on Type-2 block component decomposition (BCD) tensor modeling. Such a tensor decomposition method can take full advantage of the multidimensional structural information of electromagnetic signals to accomplish blind estimation for array parameters with higher resolution. However, existing tensor decomposition methods encounter many restrictions in applications of the EMVS array, such as the strict requirement for uniqueness conditions of decomposition, the inability to handle partially-polarized signals, etc. To solve these problems, this paper investigates tensor modeling for partially-polarized signals of an L-shaped EMVS array. The 2D AOA estimation algorithm based on rank-(L1,L2,·) BCD is developed, and the uniqueness condition of decomposition is analyzed. By means of the estimated steering matrix, the proposed algorithm can automatically achieve angle pair-matching. Numerical experiments demonstrate that the present algorithm has the advantages of both accuracy and robustness of parameter estimation. Even under the conditions of lower SNR, small angular separation and limited snapshots, the proposed algorithm still possesses better performance than subspace methods and the canonical polyadic decomposition (CPD) method.

[1]  Lieven De Lathauwer,et al.  Swamp reducing technique for tensor decomposition , 2008, 2008 16th European Signal Processing Conference.

[2]  Arye Nehorai,et al.  Nested Vector-Sensor Array Processing via Tensor Modeling , 2014, IEEE Transactions on Signal Processing.

[3]  J. D. Río,et al.  The matrix pencil method for two-dimensional direction of arrival estimation employing an L-shaped array , 1997 .

[4]  Gérard Favier,et al.  The constrained block-PARAFAC decomposition , 2006 .

[5]  Wim Van Paesschen,et al.  Block term decomposition for modelling epileptic seizures , 2014, EURASIP J. Adv. Signal Process..

[6]  Thomas Kailath,et al.  Azimuth/elevation direction finding using regular array geometries , 1992 .

[7]  Lieven De Lathauwer,et al.  Block Component Analysis, a New Concept for Blind Source Separation , 2012, LVA/ICA.

[8]  J. Cardoso,et al.  Blind beamforming for non-gaussian signals , 1993 .

[9]  M. Viberg,et al.  Two decades of array signal processing research: the parametric approach , 1996, IEEE Signal Process. Mag..

[10]  Qun Wan,et al.  A CCM-based Pair-matching Method for Two-dimensional Arrival Angles Estimation , 2014, 2014 IEEE International Conference on Communiction Problem-solving.

[11]  J. Chang,et al.  Analysis of individual differences in multidimensional scaling via an n-way generalization of “Eckart-Young” decomposition , 1970 .

[12]  Y. Yamaguchi,et al.  A state-of-the-art review in radar polarimetry and its applications in remote sensing , 1990, IEEE Aerospace and Electronic Systems Magazine.

[13]  Lieven De Lathauwer,et al.  Decompositions of a Higher-Order Tensor in Block Terms - Part I: Lemmas for Partitioned Matrices , 2008, SIAM J. Matrix Anal. Appl..

[14]  Bülent Yener,et al.  Unsupervised Multiway Data Analysis: A Literature Survey , 2009, IEEE Transactions on Knowledge and Data Engineering.

[15]  Lieven De Lathauwer,et al.  Tensor decompositions with Vandermonde factor and applications in signal processing , 2012, 2012 Conference Record of the Forty Sixth Asilomar Conference on Signals, Systems and Computers (ASILOMAR).

[16]  Yujie Gu,et al.  Robust Adaptive Beamforming Based on Interference Covariance Matrix Reconstruction and Steering Vector Estimation , 2012, IEEE Transactions on Signal Processing.

[17]  Lieven De Lathauwer,et al.  An enhanced line search scheme for complex-valued tensor decompositions. Application in DS-CDMA , 2008, Signal Process..

[18]  Nicolas Le Bihan,et al.  Vector-Sensor MUSIC for Polarized Seismic Sources Localization , 2005, EURASIP J. Adv. Signal Process..

[19]  R. Harshman,et al.  Modeling multi‐way data with linearly dependent loadings , 2009 .

[20]  Thomas Kailath,et al.  ESPRIT-estimation of signal parameters via rotational invariance techniques , 1989, IEEE Trans. Acoust. Speech Signal Process..

[21]  Lieven De Lathauwer,et al.  A Block Component Model-Based Blind DS-CDMA Receiver , 2008, IEEE Transactions on Signal Processing.

[22]  Philippe Forster,et al.  Derivation of the theoretical performance of a Tensor MUSIC algorithm , 2016, Signal Process..

[23]  Tamara G. Kolda,et al.  Tensor Decompositions and Applications , 2009, SIAM Rev..

[24]  Fengzhong Qu,et al.  Source Estimation Using Coprime Array: A Sparse Reconstruction Perspective , 2017, IEEE Sensors Journal.

[25]  Pierre Comon,et al.  Tensors : A brief introduction , 2014, IEEE Signal Processing Magazine.

[26]  Q. Wan,et al.  A two-dimensional arrival angles estimation for L-shaped array based on tensor decomposition , 2015 .

[27]  Andrzej Cichocki,et al.  Tensor Decompositions for Signal Processing Applications: From two-way to multiway component analysis , 2014, IEEE Signal Processing Magazine.

[28]  Lieven De Lathauwer,et al.  Blind Separation of Exponential Polynomials and the Decomposition of a Tensor in Rank-(Lr, Lr, 1) Terms , 2011, SIAM J. Matrix Anal. Appl..

[29]  L. Lathauwer,et al.  An enhanced plane search scheme for complex-valued tensor decompositions , 2010 .

[30]  C. L. Nikias,et al.  Signal processing with higher-order spectra , 1993, IEEE Signal Processing Magazine.

[31]  Michael D. Zoltowski,et al.  ESPRIT-based 2-D direction finding with a sparse uniform array of electromagnetic vector sensors , 2000, IEEE Trans. Signal Process..

[32]  A. Cichocki,et al.  Non-Orthogonal Tensor Diagonalization, a Tool for Block Tensor Decompositions , 2014 .

[33]  P. Stoica,et al.  The stochastic CRB for array processing: a textbook derivation , 2001, IEEE Signal Processing Letters.

[34]  André Lima Férrer de Almeida,et al.  PARAFAC-based unified tensor modeling for wireless communication systems with application to blind multiuser equalization , 2007, Signal Process..

[35]  Nico Vervliet,et al.  Coupled rank-(Lm, Ln, •) block term decomposition by coupled block simultaneous generalized Schur decomposition , 2016, 2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[36]  Zhiwen Liu,et al.  Quad-Quaternion MUSIC for DOA Estimation Using Electromagnetic Vector Sensors , 2008, EURASIP J. Adv. Signal Process..

[37]  Lieven De Lathauwer,et al.  Decompositions of a Higher-Order Tensor in Block Terms - Part II: Definitions and Uniqueness , 2008, SIAM J. Matrix Anal. Appl..

[38]  Xin Yuan Estimating the DOA and the Polarization of a Polynomial-Phase Signal Using a Single Polarized Vector-Sensor , 2012, IEEE Transactions on Signal Processing.

[39]  Lieven De Lathauwer,et al.  Decompositions of a Higher-Order Tensor in Block Terms - Part III: Alternating Least Squares Algorithms , 2008, SIAM J. Matrix Anal. Appl..

[40]  Shihua Zhu,et al.  A CANDECOMP/PARAFAC Perspective on Uniqueness of DOA Estimation Using a Vector Sensor Array , 2011, IEEE Transactions on Signal Processing.

[41]  Nikos D. Sidiropoulos,et al.  Parallel factor analysis in sensor array processing , 2000, IEEE Trans. Signal Process..

[42]  Arye Nehorai,et al.  Linear independence of steering vectors of an electromagnetic vector sensor , 1996, IEEE Trans. Signal Process..

[43]  Richard A. Harshman,et al.  Foundations of the PARAFAC procedure: Models and conditions for an "explanatory" multi-model factor analysis , 1970 .

[44]  N. Tayem,et al.  L-shape 2-dimensional arrival angle estimation with propagator method , 2005 .

[45]  David Brie,et al.  DOA estimation for polarized sources on a vector-sensor array by PARAFAC decomposition of the fourth-order covariance tensor , 2008, 2008 16th European Signal Processing Conference.

[46]  R. T. Compton,et al.  Two dimensional angle and polarization estimation using the ESPRIT algorithm , 1991, Antennas and Propagation Society Symposium 1991 Digest.

[47]  J. Compton The tripole antenna: An adaptive array with full polarization flexibility , 1981 .

[48]  Joseph Tabrikian,et al.  Source localization using vector sensor array in a multipath environment , 2004, IEEE Transactions on Signal Processing.

[49]  S. Kikuchi,et al.  Pair-Matching Method for Estimating 2-D Angle of Arrival With a Cross-Correlation Matrix , 2006, IEEE Antennas and Wireless Propagation Letters.

[50]  Alwin Stegeman,et al.  Candecomp/Parafac: From Diverging Components to a Decomposition in Block Terms , 2012, SIAM J. Matrix Anal. Appl..

[51]  K. T. Wong,et al.  Closed-form direction finding and polarization estimation with arbitrarily spaced electromagnetic vector-sensors at unknown locations , 2000 .

[52]  Arye Nehorai,et al.  Vector-sensor array processing for electromagnetic source localization , 1994, IEEE Trans. Signal Process..

[53]  David Brie,et al.  The effect of polarization separation on the performance of Candecomp/Parafac-based vector sensor array processing , 2012, Phys. Commun..

[54]  Zhiwen Liu,et al.  Adaptive tensorial beamformer based on electromagnetic vector-sensor arrays with coherent interferences , 2015, Multidimens. Syst. Signal Process..

[55]  Zhiwen Liu,et al.  Direction-of-arrival estimation via twofold mode-projection , 2009, Signal Process..

[56]  David Brie,et al.  Identifiability of the parafac model for polarized source mixture on a vector sensor array , 2008, 2008 IEEE International Conference on Acoustics, Speech and Signal Processing.

[57]  Jerry M. Mendel,et al.  Azimuth and elevation direction finding using arbitrary array geometries , 1998, IEEE Trans. Signal Process..

[58]  R. Bro PARAFAC. Tutorial and applications , 1997 .

[59]  Pierre Comon,et al.  Independent component analysis, A new concept? , 1994, Signal Process..

[60]  Lieven De Lathauwer,et al.  Optimization-Based Algorithms for Tensor Decompositions: Canonical Polyadic Decomposition, Decomposition in Rank-(Lr, Lr, 1) Terms, and a New Generalization , 2013, SIAM J. Optim..

[61]  Naotaka Fujii,et al.  Higher Order Partial Least Squares (HOPLS): A Generalized Multilinear Regression Method , 2012, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[62]  Michael D. Zoltowski,et al.  Closed-form 2-D angle estimation with rectangular arrays in element space or beamspace via unitary ESPRIT , 1996, IEEE Trans. Signal Process..