Metal-induced structural variability of mononuclear metal-binding sites from a database perspective.

[1]  R. Bonomo,et al.  Deciphering the evolution of metallo-β-lactamases: a journey from the test tube to the bacterial periplasm. , 2022, The Journal of biological chemistry.

[2]  Janet M Thornton,et al.  The impact of AlphaFold2 one year on , 2022, Nature Methods.

[3]  A. Elcock,et al.  Identification of Iron-Sulfur (Fe-S) Cluster and Zinc (Zn) Binding Sites Within Proteomes Predicted by DeepMind's AlphaFold2 Program Dramatically Expands the Metalloproteome. , 2021, Journal of molecular biology.

[4]  Oriol Vinyals,et al.  Applying and improving AlphaFold at CASP14 , 2021, Proteins.

[5]  Oriol Vinyals,et al.  Highly accurate protein structure prediction with AlphaFold , 2021, Nature.

[6]  N. Ben-Tal,et al.  Integrative structural biology in the era of accurate structure prediction. , 2021, Journal of molecular biology.

[7]  Gyu Rie Lee,et al.  Accurate prediction of protein structures and interactions using a 3-track neural network , 2021, Science.

[8]  A. Elofsson,et al.  Protein sequence‐to‐structure learning: Is this the end(‐to‐end revolution)? , 2021, Proteins.

[9]  Dan S. Tawfik,et al.  Enzyme neo- versus re-functionalization - an epistatic ratchet versus a smooth reversible transition. , 2019, Molecular biology and evolution.

[10]  Mohammed AlQuraishi,et al.  AlphaFold at CASP13 , 2019, Bioinform..

[11]  Johannes L. Schönberger,et al.  SciPy 1.0: fundamental algorithms for scientific computing in Python , 2019, Nature Methods.

[12]  K. Franz,et al.  Emerging Opportunities To Manipulate Metal Trafficking for Therapeutic Benefit. , 2019, Inorganic chemistry.

[13]  Amit Kumar,et al.  Hyperbolic Pressure-Temperature Phase Diagram of the Zinc-Finger Protein apoKti11 Detected by NMR Spectroscopy. , 2019, The journal of physical chemistry. B.

[14]  Heather A Carlson,et al.  Inherent versus induced protein flexibility: Comparisons within and between apo and holo structures , 2019, PLoS Comput. Biol..

[15]  wwPDB consortium Protein Data Bank: the single global archive for 3D macromolecular structure data , 2018, Nucleic Acids Res..

[16]  Pengyu Y. Ren,et al.  Many-body effect determines the selectivity for Ca2+ and Mg2+ in proteins , 2018, Proceedings of the National Academy of Sciences.

[17]  J. Thornton,et al.  To what extent do structural changes in catalytic metal sites affect enzyme function? , 2018, Journal of inorganic biochemistry.

[18]  Antonio Rosato,et al.  MetalPDB in 2018: a database of metal sites in biological macromolecular structures , 2017, Nucleic Acids Res..

[19]  J. Helmann,et al.  Metal homeostasis and resistance in bacteria , 2017, Nature Reviews Microbiology.

[20]  M. Zastrow,et al.  A Crystallographic Examination of Predisposition versus Preorganization in de Novo Designed Metalloproteins. , 2016, Journal of the American Chemical Society.

[21]  R. Bonomo,et al.  Membrane-anchoring stabilizes and favors secretion of New Delhi Metallo-β-lactamase , 2016, Nature chemical biology.

[22]  Gabriele Cavallaro,et al.  MetalS2: A Tool for the Structural Alignment of Minimal Functional Sites in Metal-Binding Proteins and Nucleic Acids , 2013, J. Chem. Inf. Model..

[23]  Gabriele Cavallaro,et al.  MetalPDB: a database of metal sites in biological macromolecular structures , 2012, Nucleic Acids Res..

[24]  Ivano Bertini,et al.  Minimal Functional Sites Allow a Classification of Zinc Sites in Proteins , 2011, PloS one.

[25]  S. Antonyuk,et al.  Monitoring and validating active site redox states in protein crystals. , 2011, Biochimica et biophysica acta.

[26]  Dianne Ford,et al.  Metalloproteins and metal sensing , 2009, Nature.

[27]  Janet M. Thornton,et al.  Metal-MACiE: a database of metals involved in biological catalysis , 2009, Bioinform..

[28]  V. Sobolev,et al.  Flexibility of metal binding sites in proteins on a database scale , 2005, Proteins.

[29]  M. Berridge,et al.  Calcium: Calcium signalling: dynamics, homeostasis and remodelling , 2003, Nature Reviews Molecular Cell Biology.

[30]  F. Wilcoxon,et al.  Individual comparisons of grouped data by ranking methods. , 1946, Journal of economic entomology.