Single-mode tunable laser emission in the single-exciton regime from colloidal nanocrystals

[1]  Sandrine Ithurria,et al.  Colloidal atomic layer deposition (c-ALD) using self-limiting reactions at nanocrystal surface coupled to phase transfer between polar and nonpolar media. , 2012, Journal of the American Chemical Society.

[2]  G. Rainò,et al.  Nearly Temperature‐Independent Threshold for Amplified Spontaneous Emission in Colloidal CdSe/CdS Quantum Dot‐in‐Rods , 2012, Advanced materials.

[3]  G. Patriarche,et al.  Colloidal CdSe/CdS dot-in-plate nanocrystals with 2D-polarized emission. , 2012, ACS nano.

[4]  Jonathan M. Ward,et al.  WGM microresonators: sensing, lasing and fundamental optics with microspheres , 2011 .

[5]  Hui Li,et al.  Spatially indirect emission in a luminescent nanocrystal molecule. , 2011, Nano letters.

[6]  Liberato Manna,et al.  Physical properties of elongated inorganic nanoparticles , 2011 .

[7]  L. Squire,et al.  Memory, Visual Discrimination Performance, and the Human Hippocampus , 2011, The Journal of Neuroscience.

[8]  F. García-Santamaría,et al.  Breakdown of volume scaling in Auger recombination in CdSe/CdS heteronanocrystals: the role of the core-shell interface. , 2011, Nano letters.

[9]  N. Borys,et al.  The Role of Particle Morphology in Interfacial Energy Transfer in CdSe/CdS Heterostructure Nanocrystals , 2010, Science.

[10]  Síle Nic Chormaic,et al.  Thermo-optical tuning of whispering gallery modes in Er:Yb co-doped phosphate glass microspheres , 2010 .

[11]  G. Lanzani,et al.  Suppression of biexciton auger recombination in CdSe/CdS dot/rods: role of the electronic structure in the carrier dynamics. , 2010, Nano letters.

[12]  Guglielmo Lanzani,et al.  Lasing in self-assembled microcavities of CdSe/CdS core/shell colloidal quantum rods. , 2010, Nanoscale.

[13]  N. Gregersen,et al.  A highly efficient single-photon source based on a quantum dot in a photonic nanowire , 2010 .

[14]  M. Kovalenko,et al.  Exciton–Exciton Interaction and Optical Gain in Colloidal CdSe/CdS Dot/Rod Nanocrystals , 2009, Advanced materials.

[15]  John Silcox,et al.  Non-blinking semiconductor nanocrystals , 2009, Nature.

[16]  U. Banin,et al.  Multiexciton engineering in seeded core/shell nanorods: transfer from type-I to quasi-type-II regimes. , 2009, Nano letters.

[17]  F. García-Santamaría,et al.  Suppressed auger recombination in "giant" nanocrystals boosts optical gain performance. , 2009, Nano letters.

[18]  Abderrahim Ramdane,et al.  Pulse generation at 346 GHz using a passively mode locked quantum-dash-based laser at 1.55 μm , 2009 .

[19]  Jian Xu,et al.  Two-photon-pumped lasing from colloidal nanocrystal quantum dots. , 2008, Optics letters.

[20]  Yasuhiko Arakawa,et al.  Coupling of quantum-dot light emission with a three-dimensional photonic-crystal nanocavity , 2008 .

[21]  Yongmin Jung,et al.  Broadband single-mode operation of standard optical fibers by using a sub-wavelength optical wire filter. , 2008, Optics express.

[22]  B. Dubertret,et al.  Towards non-blinking colloidal quantum dots. , 2008, Nature materials.

[23]  A. Susha,et al.  Quantum dot microdrop laser , 2008, 2008 Conference on Lasers and Electro-Optics and 2008 Conference on Quantum Electronics and Laser Science.

[24]  Larry A. Coldren,et al.  High-frequency single-photon source with polarization control , 2007 .

[25]  S. Ivanov,et al.  Light Amplification in the Single-Exciton Regime Using Exciton-Exciton Repulsion in Type-II Nanocrystal Quantum Dots , 2007 .

[26]  Dmitri V Talapin,et al.  Seeded growth of highly luminescent CdSe/CdS nanoheterostructures with rod and tetrapod morphologies. , 2007, Nano letters.

[27]  Monica Nadasan,et al.  Synthesis and micrometer-scale assembly of colloidal CdSe/CdS nanorods prepared by a seeded growth approach. , 2007, Nano letters.

[28]  Jagjit Nanda,et al.  Single-exciton optical gain in semiconductor nanocrystals , 2007, Nature.

[29]  G. Duan,et al.  Recent Advances on InAs/InP Quantum Dash Based Semiconductor Lasers and Optical Amplifiers Operating at 1.55 $\mu$m , 2007, IEEE Journal of Selected Topics in Quantum Electronics.

[30]  Kerry J. Vahala,et al.  Ultralow threshold on-chip microcavity nanocrystal quantum dot lasers , 2006 .

[31]  U. Banin,et al.  Cavity QED with semiconductor nanocrystals. , 2006, Nano letters.

[32]  L. Wang,et al.  Electronic Structure of Semiconductor Nanocrystals , 2006 .

[33]  M. Xiao,et al.  Lasing action in colloidal CdS∕CdSe∕CdS quantum wells , 2005 .

[34]  P. Lagoudakis,et al.  Wave function engineering in elongated semiconductor nanocrystals with heterogeneous carrier confinement. , 2005, Nano letters.

[35]  Preston T. Snee,et al.  Whispering‐Gallery‐Mode Lasing from a Semiconductor Nanocrystal/Microsphere Resonator Composite , 2005 .

[36]  Justin M. Hodgkiss,et al.  Blue semiconductor nanocrystal laser , 2005 .

[37]  Keiji Sasaki,et al.  Resonant Frequency Control of a Microspherical Cavity by Temperature Adjustment , 2004 .

[38]  P. Anikeeva,et al.  Light Amplification Using Inverted Core/Shell Nanocrystals: Towards Lasing in the Single-Exciton Regime , 2004 .

[39]  Oliver Benson,et al.  Highly Emissive Colloidal CdSe/CdS Heterostructures of Mixed Dimensionality , 2003 .

[40]  K. Vahala,et al.  Ideality in a fiber-taper-coupled microresonator system for application to cavity quantum electrodynamics. , 2003, Physical review letters.

[41]  Moungi G. Bawendi,et al.  From amplified spontaneous emission to microring lasing using nanocrystal quantum dot solids , 2002 .

[42]  Vikram C. Sundar,et al.  Color-selective semiconductor nanocrystal laser , 2002 .

[43]  F. Peeters,et al.  Magnetoexcitons in planar type-II quantum dots in a perpendicular magnetic field , 2001 .

[44]  Wolfgang Werner Langbein,et al.  Light trapped in a photonic dot: Microspheres act as a cavity for quantum dot emission , 2001 .

[45]  A. Malko,et al.  Optical gain and stimulated emission in nanocrystal quantum dots. , 2000, Science.

[46]  J. Hare,et al.  Frequency tuning of the whispering-gallery modes of silica microspheres for cavity quantum electrodynamics and spectroscopy. , 2000, Optics letters.

[47]  M. Rosen,et al.  The Electronic Structure of Semiconductor Nanocrystals1 , 2000 .

[48]  Klimov,et al.  Quantization of multiparticle auger rates in semiconductor quantum dots , 2000, Science.

[49]  J. Knight,et al.  Phase-matched excitation of whispering-gallery-mode resonances by a fiber taper. , 1997, Optics letters.

[50]  J. Raimond,et al.  Mapping whispering-gallery modes in microspheres with a near-field probe. , 1995, Optics letters.

[51]  H. Misawa,et al.  Picosecond lasing dynamics of a single dye-doped microparticle in solution , 1993 .

[52]  Zhou,et al.  Quantum confinement in semiconductor heterostructure nanometer-size particles. , 1993, Physical review. B, Condensed matter.

[53]  Acknowledgements , 1992, Experimental Gerontology.

[54]  P. J. Parbrook,et al.  Band alignments in Zn(Cd)S(Se) strained layer superlattices , 1992 .

[55]  P. J. Parbrook,et al.  The optical properties of wide bandgap binary II-VI superlattices , 1992 .

[56]  A. H. Nethercot Prediction of Fermi Energies and Photoelectric Thresholds Based on Electronegativity Concepts , 1974 .

[57]  Arto Nurmikko,et al.  Red, green and blue lasing enabled by single-exciton gain in colloidal quantum dot films. , 2012, Nature nanotechnology.

[58]  Alexander L Efros,et al.  Suppression of auger processes in confined structures. , 2010, Nano letters.

[59]  V. Klimov Semiconductor and Metal Nanocrystals , 2004 .

[60]  H. Weller,et al.  Preparation, characterization, and photophysics of the quantum dot quantum well system cadmium sulfide/mercury sulfide/cadmium sulfide , 1994 .