Relatives of rubella virus in diverse mammals

[1]  T. Keros,et al.  First evidence of hepatitis E virus infection in a small mammal (yellow-necked mouse) from Croatia , 2019, PloS one.

[2]  Leonie F. Forth,et al.  Highly efficient library preparation for Ion Torrent sequencing using Y-adapters. , 2019, BioTechniques.

[3]  D. Gordenin,et al.  Infectious vaccine-derived rubella viruses emerge, persist, and evolve in cutaneous granulomas of children with primary immunodeficiencies , 2019, PLoS pathogens.

[4]  Y. Nakazawa,et al.  Isolation and Characterization of Akhmeta Virus from Wild-Caught Rodents (Apodemus spp.) in Georgia , 2019, Journal of Virology.

[5]  R. Linkins,et al.  Accelerating measles and rubella elimination through research and innovation - Findings from the Measles & Rubella Initiative research prioritization process, 2016. , 2019, Vaccine.

[6]  J. Ratcliffe,et al.  Phylogeny matters: revisiting ‘a comparison of bats and rodents as reservoirs of zoonotic viruses’ , 2019, Royal Society Open Science.

[7]  M. Wilson,et al.  Association of Ocular Inflammation and Rubella Virus Persistence , 2018, JAMA ophthalmology.

[8]  Silvio C. E. Tosatto,et al.  InterPro in 2019: improving coverage, classification and access to protein sequence annotations , 2018, Nucleic Acids Res..

[9]  Sumit Bharadwaj,et al.  Acute Encephalitis with Atypical Presentation of Rubella in Family Cluster, India , 2018, Emerging infectious diseases.

[10]  M. Beer,et al.  A Versatile Sample Processing Workflow for Metagenomic Pathogen Detection , 2018, Scientific Reports.

[11]  Torsten Schwede,et al.  SWISS-MODEL: homology modelling of protein structures and complexes , 2018, Nucleic Acids Res..

[12]  S. Reef,et al.  Progress Toward Rubella and Congenital Rubella Syndrome Control and Elimination — Worldwide, 2000–2018 , 2017, MMWR. Morbidity and mortality weekly report.

[13]  S. Reef,et al.  Progress in Rubella and Congenital Rubella Syndrome Control and Elimination — Worldwide, 2000–2016 , 2017, MMWR. Morbidity and mortality weekly report.

[14]  P. Strebel,et al.  Transitioning Lessons Learned and Assets of the Global Polio Eradication Initiative to Global and Regional Measles and Rubella Elimination , 2017, The Journal of infectious diseases.

[15]  A. von Haeseler,et al.  UFBoot2: Improving the Ultrafast Bootstrap Approximation , 2017, bioRxiv.

[16]  Parviez R. Hosseini,et al.  Host and viral traits predict zoonotic spillover from mammals , 2017, Nature.

[17]  P. Pevzner,et al.  metaSPAdes: a new versatile metagenomic assembler. , 2017, Genome research.

[18]  Guoyan Zhao,et al.  VirusSeeker, a computational pipeline for virus discovery and virome composition analysis. , 2017, Virology.

[19]  Daniel H. Huson,et al.  MEGAN Community Edition - Interactive Exploration and Analysis of Large-Scale Microbiome Sequencing Data , 2016, PLoS Comput. Biol..

[20]  Michael J E Sternberg,et al.  The Phyre2 web portal for protein modeling, prediction and analysis , 2015, Nature Protocols.

[21]  Alexander S. Rose,et al.  NGL Viewer: a web application for molecular visualization , 2015, Nucleic Acids Res..

[22]  Martin Beer,et al.  RIEMS: a software pipeline for sensitive and comprehensive taxonomic classification of reads from metagenomics datasets , 2015, BMC Bioinformatics.

[23]  V. Alibu,et al.  Phylogenetic analysis of rubella viruses identified in Uganda, 2003–2012 , 2014, Journal of medical virology.

[24]  S. Puechmaille,et al.  How and Why Overcome the Impediments to Resolution: Lessons from rhinolophid and hipposiderid Bats , 2014, Molecular biology and evolution.

[25]  Chao Xie,et al.  Fast and sensitive protein alignment using DIAMOND , 2014, Nature Methods.

[26]  A. von Haeseler,et al.  IQ-TREE: A Fast and Effective Stochastic Algorithm for Estimating Maximum-Likelihood Phylogenies , 2014, Molecular biology and evolution.

[27]  Brian Bushnell,et al.  BBMap: A Fast, Accurate, Splice-Aware Aligner , 2014 .

[28]  Y. Uyar,et al.  Dobrava-Belgrade Virus in Apodemus flavicollis and A. uralensis Mice, Turkey , 2014, Emerging infectious diseases.

[29]  P. Strebel,et al.  Rubella , 2013, The Lancet.

[30]  K. Matuschewski,et al.  High diversity of West African bat malaria parasites and a tight link with rodent Plasmodium taxa , 2013, Proceedings of the National Academy of Sciences.

[31]  C. Webb,et al.  A comparison of bats and rodents as reservoirs of zoonotic viruses: are bats special? , 2013, Proceedings of the Royal Society B: Biological Sciences.

[32]  E. Kirkness,et al.  Analysis of whole genome sequences of 16 strains of rubella virus from the United States, 1961–2009 , 2013, Virology Journal.

[33]  R. DuBois,et al.  Functional and evolutionary insight from the crystal structure of rubella virus protein E1 , 2013, Nature.

[34]  P. Maes,et al.  Complex evolution and epidemiology of Dobrava-Belgrade hantavirus: definition of genotypes and their characteristics , 2012, Archives of Virology.

[35]  M. Groschup,et al.  Molecular Identification of Small Mammal Species Using Novel Cytochrome b Gene-Derived Degenerated Primers , 2012, Biochemical Genetics.

[36]  Sergey I. Nikolenko,et al.  SPAdes: A New Genome Assembly Algorithm and Its Applications to Single-Cell Sequencing , 2012, J. Comput. Biol..

[37]  Steven L Salzberg,et al.  Fast gapped-read alignment with Bowtie 2 , 2012, Nature Methods.

[38]  Walter Jetz,et al.  Integrating biodiversity distribution knowledge: toward a global map of life. , 2012, Trends in ecology & evolution.

[39]  Marco Biasini,et al.  Toward the estimation of the absolute quality of individual protein structure models , 2010, Bioinform..

[40]  Richard Durbin,et al.  Sequence analysis Fast and accurate short read alignment with Burrows – Wheeler transform , 2009 .

[41]  M. Groschup,et al.  Network “Rodent-borne pathogens” in Germany: longitudinal studies on the geographical distribution and prevalence of hantavirus infections , 2008, Parasitology Research.

[42]  Nathan D. Wolfe,et al.  Origins of major human infectious diseases , 2007, Nature.

[43]  H. Ushijima,et al.  Genomic analysis of diverse rubella virus genotypes. , 2007, The Journal of general virology.

[44]  A. von Haeseler,et al.  Phylogenetic analysis of rubella virus including new genotype I isolates. , 2003, Virus research.

[45]  N. McAlister Gregg,et al.  Congenital cataract following German measles in the mother , 2001 .

[46]  D. Krüger,et al.  Dobrava hantavirus causes hemorrhagic fever with renal syndrome in central Europe and is carried by two different Apodemus mice species , 2001 .

[47]  M. Kretzschmar,et al.  The pre-vaccination epidemiology of measles, mumps and rubella in Europe: implications for modelling studies , 2000, Epidemiology and Infection.

[48]  T. Struhsaker Ecology of an African Rain Forest: Logging in Kibale and the Conflict Between Conservation and Exploitation , 1999 .

[49]  R. Hails,et al.  Tick-borne encephalitis virus transmission between ticks cofeeding on specific immune natural rodent hosts. , 1997, Virology.

[50]  J. H. Strauss,et al.  Characterization of the rubella virus nonstructural protease domain and its cleavage site , 1996, Journal of virology.

[51]  J. Wolinsky,et al.  Immunodominant T-cell epitopes of rubella virus structural proteins defined by synthetic peptides , 1993, Journal of virology.

[52]  W. T. Moore,et al.  An antibody- and synthetic peptide-defined rubella virus E1 glycoprotein neutralization domain , 1993, Journal of virology.

[53]  N. Gregg Congenital cataract following German measles in the mother. 1941. , 1991, Epidemiology and infection.

[54]  E. Myers,et al.  Basic local alignment search tool. , 1990, Journal of molecular biology.

[55]  T. Hobman,et al.  In vitro and in vivo expression of rubella virus glycoprotein E2: the signal peptide is contained in the C-terminal region of capsid protein. , 1989, Virology.

[56]  L. Cooper The history and medical consequences of rubella. , 1985, Reviews of infectious diseases.

[57]  I. Landau,et al.  [Description of P. cyclopsi n. sp. a parasite of the microchiropteran bat Hipposideros cyclops in Gabon (author's transl)]. , 1978, Annales de parasitologie humaine et comparee.

[58]  E. Buescher,et al.  Recovery of Rubella Virus from Army Recruits , 1962, Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine.

[59]  T. H. Weller,et al.  Propagation in Tissue Culture of Cytopathic Agents from Patients with Rubella-Like Illness.∗ , 1962 .

[60]  C. Swan,et al.  FURTHER OBSERVATIONS ON CONGENITAL DEFECTS IN INFANTS FOLLOWING INFECTIOUS DISEASES DURING PREGNANCY, WITH SPECIAL REFERENCE TO RUBELLA , 1944 .

[61]  Progress in rubella and congenital rubella syndrome control and elimination – worldwide, 2000–2016. , 2017, Releve epidemiologique hebdomadaire.

[62]  M. Happold,et al.  Mammals of Africa Volume IV - Hedgehogs, Shrews and Bats , 2013 .

[63]  A. Plumptre,et al.  The biodiversity of the Albertine Rift , 2007 .

[64]  R. Libois,et al.  So close and so different: comparative phylogeography of two small mammal species, the Yellow-necked fieldmouse (Apodemus flavicollis) and the Woodmouse (Apodemus sylvaticus) in the Western Palearctic region , 2005, Heredity.

[65]  T. O'Shea,et al.  Monitoring trends in bat populations of the United States and territories: status of the science and recommendations for the future , 2003 .

[66]  R D Appel,et al.  Protein identification and analysis tools in the ExPASy server. , 1999, Methods in molecular biology.

[67]  T. Frey,et al.  Neurological aspects of rubella virus infection. , 1997, Intervirology.

[68]  C. Swan,et al.  Final observations on congenital defects in infants following infectious diseases during pregnancy, with special reference to rubella. , 1946, The Medical journal of Australia.