Compounding of distributions: a survey and new generalized classes

Generalizing distributions is an old practice and has ever been considered as precious as many other practical problems in statistics. It simply started with defining different mathematical functional forms, and then induction of location, scale or inequality parameters. The generalization through induction of shape parameter(s) started in 1997, and the last two decades were full of such practices. But to cope with the complex situations under series and parallel structures, the art of mixing discrete and continuous started in 1998. In this article, we present a survey on compounding univariate distributions, their extensions and classes. We review several available compound classes and propose some new ones. The recent trends in the construction of generalized and compounding classes are discussed, and the need for future works are addressed.

[1]  Gokarna Aryal,et al.  On the Transmuted AdditiveWeibull Distribution , 2016 .

[2]  Francisco Cribari-Neto,et al.  A generalization of the exponential-Poisson distribution , 2008, 0809.1894.

[3]  Gauss M. Cordeiro,et al.  The Exponentiated Generalized Class of Distributions , 2021, Journal of Data Science.

[4]  S. Nadarajah,et al.  Modified Beta Distributions , 2014, Sankhya B.

[5]  Francisco Louzada,et al.  The destructive negative binomial cure rate model with a latent activation scheme. , 2013, Statistical methodology.

[6]  Indranil Ghosh,et al.  The Transmuted Marshall-Olkin Fr\'{e}chet Distribution: Properties and Applications , 2015 .

[7]  Saralees Nadarajah,et al.  The geometric exponential Poisson distribution , 2013, Stat. Methods Appl..

[8]  Eisa Mahmoudi,et al.  Exponentiated Weibull-logarithmic Distribution: Model, Properties and Applications , 2014 .

[9]  A. Nematollahi,et al.  The modified exponential-geometric distribution , 2016 .

[10]  Nadeem Shafique Butt,et al.  The Transmuted Weibull-Pareto Distribution , 2016 .

[11]  Gauss M. Cordeiro,et al.  The Burr XII power series distributions: A new compounding family , 2015 .

[12]  F. Famoye,et al.  Exponentiated $T$-$X$ Family of Distributions with Some Applications , 2013 .

[13]  The transmuted log-logistic regression model: a new model for time up to first calving of cows , 2016 .

[14]  Morad Alizadeh,et al.  Generalized Transmuted Family of Distributions: Properties and Applications , 2016 .

[15]  Gladys D. C. Barriga,et al.  A New Class of Survival Regression Models with Cure Fraction , 2014, Journal of Data Science.

[16]  A. B. Simas,et al.  The exp-$G$ family of probability distributions , 2010, 1003.1727.

[17]  On the Harris extended family of distributions , 2015 .

[18]  H. Bolfarine,et al.  An EM algorithm for estimating the destructive weighted Poisson cure rate model , 2016 .

[19]  Vitor A. A. Marchi,et al.  The Complementary Exponentiated Exponential Geometric Lifetime Distribution , 2013 .

[20]  Esmaile Khorram,et al.  A new three-parameter ageing distribution , 2011 .

[21]  Morad Alizadeh,et al.  The Zografos-Balakrishnan odd log-logistic family of distributions: Properties and Applications , 2016 .

[22]  Wenhao Gui,et al.  The Lindley-Poisson distribution in lifetime analysis and its properties , 2014 .

[23]  Mahdi Doostparast,et al.  A new family of distributions: the Kumaraswamy odd log-logistic, properties and applications , 2014 .

[24]  Narayanaswamy Balakrishnan,et al.  An EM algorithm for the estimation of parameters of a flexible cure rate model with generalized gamma lifetime and model discrimination using likelihood- and information-based methods , 2015, Comput. Stat..

[25]  Artur J. Lemonte,et al.  The Poisson Generalized Linear Failure Rate Model , 2015 .

[26]  Zohdy M. Nofal,et al.  The Transmuted Weibull Lomax Distribution: Properties and Application , 2015 .

[27]  New results on the Ristić–Balakrishnan family of distributions , 2016 .

[28]  William T. Shaw,et al.  The alchemy of probability distributions: beyond Gram-Charlier expansions, and a skew-kurtotic-normal distribution from a rank transmutation map , 2009, 0901.0434.

[29]  Bander Al-Zahrani,et al.  Statistical analysis of the Lomax–Logarithmic distribution , 2015 .

[30]  Hamid Bidram The Beta Exponential-Geometric Distribution , 2012, Commun. Stat. Simul. Comput..

[31]  Hamzeh Torabi,et al.  The Logistic-Uniform Distribution and Its Applications , 2014, Commun. Stat. Simul. Comput..

[33]  Natalie Verónika Rondinel Mendoza,et al.  The exponentiated-log-logistic geometric distribution: Dual activation , 2016 .

[34]  Abdulhakim Al-Babtain,et al.  The Kumaraswamy-transmuted exponentiated modified Weibull distribution , 2015, Commun. Stat. Simul. Comput..

[35]  M. H. Tahir,et al.  Parameter induction in continuous univariate distributions: Well-established G families. , 2015, Anais da Academia Brasileira de Ciencias.

[36]  S. Nadarajah,et al.  A new three-parameter lifetime distribution , 2013 .

[37]  Mahmoud M. Mansour,et al.  A new generalized of transmuted Lindley distribution , 2015 .

[38]  Gauss M. Cordeiro,et al.  The beta-Weibull geometric distribution , 2013 .

[39]  S. Tahmasebi,et al.  Gompertz-power series distributions , 2015, 1509.03595.

[40]  I. B. Abdul-Moniem,et al.  Transmuted Gompertz Distribution , 2015 .

[41]  B. Oluyede,et al.  Extended Lindley Poisson Distribution , 2015 .

[42]  Ângela Gonçalves da Silva,et al.  A distribuição beta Fréchet transmutada: propriedades e aplicação a dados de sobrevivência , 2015 .

[43]  Faton Merovci,et al.  TRANSMUTED EXPONENTIATED EXPONENTIAL DISTRIBUTION , 2013 .

[44]  Abd El Hady N. Ebraheim Exponentiated Transmuted Weibull Distribution A Generalization of the Weibull Distribution , 2014 .

[45]  R. King,et al.  Transmuted Weibull distribution: Properties and estimation , 2017 .

[46]  Robert King,et al.  A New Class of Transmuted Inverse Weibull Distribution for Reliability Analysis , 2014 .

[47]  Robert King,et al.  Transmuted generalized inverse weibull distribution | NOVA. The University of Newcastle's Digital Repository , 2014 .

[48]  Robert King,et al.  Transmuted Modified Weibull Distribution: A Generalization of the Modified Weibull Probability Distribution , 2013 .

[49]  G. Cordeiro,et al.  The Exponentiated G Poisson Model , 2015 .

[50]  G. Cordeiro,et al.  The beta Marshall-Olkin family of distributions , 2015 .

[51]  Hamid Bidram,et al.  A Note on Exponentiated F-geometric Distributions , 2014 .

[52]  Gauss M. Cordeiro,et al.  The Transmuted Generalized Modified Weibull Distribution , 2017 .

[53]  I. Elbatal,et al.  Transmuted Lindley-Geometric Distribution and its applications , 2013, 1309.3774.

[54]  Morad Alizadeh,et al.  The Exponentiated Half-Logistic Family of Distributions: Properties and Applications , 2014 .

[55]  Likelihood Inference for Flexible Cure Rate Models with Gamma Lifetimes , 2015 .

[56]  Gauss M. Cordeiro,et al.  A new compounding family of distributions: The generalized gamma power series distributions , 2016, J. Comput. Appl. Math..

[57]  Zohdy M. Nofal,et al.  The generalized transmuted-G family of distributions , 2017 .

[58]  Alice Lemos Morais,et al.  A compound class of Weibull and power series distributions , 2011, Comput. Stat. Data Anal..

[59]  Gauss M. Cordeiro,et al.  The Lomax generator of distributions: Properties, minification process and regression model , 2014, Appl. Math. Comput..

[60]  Josemar Rodrigues,et al.  A flexible model for survival data with a cure rate: a Bayesian approach , 2011 .

[61]  Ramesh C. Gupta,et al.  Analysis of survival data by an exponential-generalized Poisson distribution , 2014 .

[62]  F. Louzada,et al.  THE POISSON-WEIBULL DISTRIBUTION , 2011 .

[63]  Gauss M. Cordeiro,et al.  A new class of fatigue life distributions , 2012, 1212.0707.

[64]  I. Olkin,et al.  A new method for adding a parameter to a family of distributions with application to the exponential and Weibull families , 1997 .

[65]  Zhenmin Chen A new two-parameter lifetime distribution with bathtub shape or increasing failure rate function , 2000 .

[66]  Pushpa L. Gupta,et al.  Modeling failure time data by lehman alternatives , 1998 .

[67]  Francisco Louzada,et al.  The complementary Weibull geometric distribution , 2014 .

[68]  F. Famoye,et al.  BETA-NORMAL DISTRIBUTION AND ITS APPLICATIONS , 2002 .

[69]  Božidar V. Popović,et al.  A Two-Parameter Distribution Obtained by Compounding the Generalized Exponential and Exponential Distributions , 2016 .

[70]  S. Tahmasebi,et al.  Generalized Gompertz-power series distributions , 2015, 1508.07634.

[71]  B. Oluyede,et al.  The Log-logistic Weibull Distribution with Applications to Lifetime Data , 2016 .

[72]  E. Mahmoudi,et al.  Exponentiated Weibull Power Series Distributions and its Applications , 2012, 1212.5613.

[73]  Faton Merovci,et al.  Transmuted Lindley Distribution , 2013 .

[74]  S. Alkarni,et al.  A compound class of Poisson and lifetime distributions , 2012 .

[75]  Mojtaba Ganjali,et al.  The generalized modified Weibull power series distribution: Theory and applications , 2016, Comput. Stat. Data Anal..

[76]  Muhammad Shuaib Khan,et al.  Transmuted generalized exponential distribution: A generalization of the exponential distribution with applications to survival data , 2017, Commun. Stat. Simul. Comput..

[77]  Francisco Louzada-Neto,et al.  The Poisson-exponential lifetime distribution , 2011, Comput. Stat. Data Anal..

[78]  Francisco Louzada,et al.  An extended Lindley distribution , 2012 .

[79]  Michael W Kattan,et al.  A power series beta Weibull regression model for predicting breast carcinoma , 2015, Statistics in medicine.

[80]  S. Balaswamy,et al.  Transmuted New Modified Weibull Distribution , 2016 .

[81]  Sadegh Rezaei,et al.  A New Lifetime Distribution with Increasing Failure Rate: Exponential Truncated Poisson , 2012 .

[82]  M. Bourguignon,et al.  THE TRANSMUTED BIRNBAUM-SAUNDERS DISTRIBUTION , 2017 .

[83]  G. Cordeiro,et al.  On the Harris-G class of distributions: General results and application , 2015 .

[84]  Gauss M. Cordeiro,et al.  The exponential–Weibull lifetime distribution , 2014 .

[85]  Eisa Mahmoudi,et al.  Generalized exponential-power series distributions , 2012, Comput. Stat. Data Anal..

[86]  F. Louzada,et al.  The complementary exponential power series distribution , 2013 .

[87]  M. Hussian Estimation of P(Y, 2013 .

[88]  S. Nadarajah,et al.  Compound distributions motivated by linear failure rate , 2016 .

[89]  Sobhan Shafiei,et al.  Inverse Weibull power series distributions: properties and applications , 2016 .

[90]  Zohdy M. Nofal,et al.  Transmuted Complementary Weibull Geometric Distribution , 2014 .

[91]  M. H. Alamatsaz,et al.  A complementary generalized linear failure rate-geometric distribution , 2017, Commun. Stat. Simul. Comput..

[92]  F. Famoye,et al.  Family of generalized gamma distributions: Properties and applications , 2016 .

[93]  Sadegh Rezaei,et al.  A two-parameter lifetime distribution with decreasing failure rate , 2008, Comput. Stat. Data Anal..

[94]  Samir K. Ashour,et al.  Exponentiated power Lindley distribution , 2015, Journal of advanced research.

[95]  A new family of lifetime models , 2013 .

[96]  A Yu Yakovlev,et al.  Stochastic Models of Tumor Latency and Their Biostatistical Applications , 1996 .

[97]  Zohdy M. Nofal,et al.  Exponentiated Transmuted Generalized Raleigh Distribution: A New Four Parameter Rayleigh Distribution , 2015 .

[98]  N. Balakrishnan,et al.  Lognormal lifetimes and likelihood-based inference for flexible cure rate models based on COM-Poisson family , 2013, Comput. Stat. Data Anal..

[99]  A. Roohi,et al.  TRANSMUTED EXPONENTIATED PARETO-I DISTRIBUTION , 2016 .

[100]  B. Oluyede,et al.  The Dagum-Poisson Distribution: Model, Properties and Application , 2016 .

[101]  Artur J. Lemonte,et al.  On the Marshall–Olkin extended distributions , 2016 .

[102]  Moments for Some Kumaraswamy Generalized Distributions , 2015 .

[103]  J. Boag,et al.  Maximum Likelihood Estimates of the Proportion of Patients Cured by Cancer Therapy , 1949 .

[104]  Joseph G. Ibrahim,et al.  A New Bayesian Model For Survival Data With a Surviving Fraction , 1999 .

[105]  M. H. Tahir,et al.  The Poisson-X family of distributions , 2016 .

[106]  Francisco Louzada,et al.  A New Long-Term Survival Distribution for Cancer Data , 2012, Journal of Data Science.

[107]  A Class of Truncated Binomial Lifetime Distributions , 2013 .

[108]  F. Famoye,et al.  Gumbel-Weibull Distribution: Properties and Applications , 2014 .

[109]  Mavis Pararai An Extended Lindley Poisson Distribution with Applications , 2015 .

[110]  M. H. Tahir,et al.  The logistic-X family of distributions and its applications , 2016 .

[111]  Josemar Rodrigues,et al.  The exponential COM-Poisson distribution , 2012 .

[112]  Chris P. Tsokos,et al.  On the transmuted extreme value distribution with application , 2009 .

[113]  Francisco Louzada-Neto,et al.  The complementary exponential geometric distribution: Model, properties, and a comparison with its counterpart , 2011, Comput. Stat. Data Anal..

[114]  S. Nadarajah,et al.  A new lifetime model with decreasing, increasing, bathtub-shaped, and upside-down bathtub-shaped hazard rate function , 2016 .

[115]  Faton Merovci,et al.  Transmuted Rayleigh Distribution , 2016 .

[116]  Transmuted Generalized Inverted Exponential Distribution , 2013 .

[117]  M. Elgarhy,et al.  Transmuted Generalized Lindley Distribution , 2016 .

[118]  V. Arunachalam,et al.  A generalization of Tukey's g-h family of distributions , 2015, J. Stat. Theory Appl..

[119]  E. Mahmoudi,et al.  Normal-Power series class of distributions: model, properties and spplications , 2015, 1510.07180.

[120]  Saralees Nadarajah,et al.  The exponentiated transmuted Weibull geometric distribution with application in survival analysis , 2017, Commun. Stat. Simul. Comput..

[121]  F. Louzada,et al.  The log-Weibull-negative-binomial regression model under latent failure causes and presence of randomized activation schemes , 2015 .

[122]  Narayanaswamy Balakrishnan,et al.  Expectation maximization-based likelihood inference for flexible cure rate models with Weibull lifetimes , 2016, Statistical methods in medical research.

[123]  Hamid Bidram A note on "Louzada, F., Roman, M., Cancho, V.G., 2011. The complementary exponential geometric distribution: Model, properties, and a comparison with its counterpart. Comput. Statist. Data Anal., 55, 2516-2524" , 2014, Comput. Stat. Data Anal..

[124]  Sadegh Rezaei,et al.  A New Two-Parameter Lifetime Distribution with Increasing Failure Rate , 2012 .

[125]  M. H. Tahir,et al.  The Kumaraswamy Marshal-Olkin family of distributions , 2015 .

[126]  S. P. Ahmad,et al.  Transmuted Inverse Rayleigh Distribution: A Generalization of the Inverse Rayleigh Distribution. , 2014 .

[127]  The generalized Cauchy family of distributions with applications , 2016 .

[128]  Gauss M. Cordeiro,et al.  The negative binomial–beta Weibull regression model to predict the cure of prostate cancer , 2012 .

[129]  Eisa Mahmoudi,et al.  The compound class of linear failure rate-power series distributions: Model, properties, and applications , 2014, Commun. Stat. Simul. Comput..

[130]  F. Louzada,et al.  The Exponentiated Complementary Exponential Geometric Distribution , 2013 .

[131]  G. Cordeiro,et al.  The transmuted exponentiated Weibull geometric distribution: Theory and applications , 2015 .

[132]  M. H. Tahir,et al.  WEIBULL-LOMAX DISTRIBUTION: PROPERTIES AND APPLICATIONS , 2014 .

[133]  Transmuted Power Function Distribution : A more flexible Distribution , 2016 .

[134]  D. Bhati,et al.  Transmuted geometric distribution with applications in modeling and regression analysis of count data , 2016 .

[135]  Salah M. Mohamed,et al.  A New Transmuted Additive Weibull Distribution : Based On A New Method For Adding A Parameter To A Family Of Distributions , 2015 .

[136]  C. Dagum,et al.  A new model of personal income distribution : specification and estimation , 1977, Économie appliquée.

[137]  S. Nadarajah,et al.  The Zografos–Balakrishnan-G Family of Distributions: Mathematical Properties and Applications , 2015 .

[138]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[139]  S. Nadarajah,et al.  The exponentiated G geometric family of distributions , 2015 .

[140]  Kummer Beta -Weibull Geometric Distribution A New Generalization of Beta -Weibull Geometric Distribution , 2014 .

[141]  Eisa Mahmoudi,et al.  A new two parameter lifetime distribution: model and properties , 2012 .

[142]  Mohammad Reza Zadkarami,et al.  A new generalization of lifetime distributions , 2015, Comput. Stat..

[143]  F. Famoye,et al.  On generating T-X family of distributions using quantile functions , 2014 .

[144]  Umesh Singh,et al.  A new upside-down bathtub shaped hazard rate model for survival data analysis , 2014, Appl. Math. Comput..

[145]  F. Louzada,et al.  The exponential Poisson logarithmic distribution , 2016 .

[146]  Gauss M. Cordeiro,et al.  The Poisson Birnbaum–Saunders model with long-term survivors , 2014 .

[147]  M. Nassar,et al.  A NEW GENERALIZATION OF THE EXPONENTIAL-GEOMETRIC DISTRIBUTION , 2012 .

[148]  G. Cordeiro,et al.  A New Family of Distributions: Libby-Novick Beta , 2014 .

[149]  R. King,et al.  Transmuted Kumaraswamy Distribution , 2016 .

[150]  Narayanaswamy Balakrishnan,et al.  COM–Poisson cure rate survival models and an application to a cutaneous melanoma data , 2009 .

[151]  M. H. Tahir,et al.  The beta odd log-logistic generalized family of distributions , 2016 .

[152]  Božidar V. Popović,et al.  Libby and Novick's generalized beta exponential distribution , 2015 .

[153]  Generalized exponential geometric extreme distribution , 2016 .

[154]  H. Bakouch,et al.  An exponentiated exponential binomial distribution with application , 2012 .

[155]  Joseph Berkson,et al.  Survival Curve for Cancer Patients Following Treatment , 1952 .

[156]  Gauss M. Cordeiro,et al.  The compound class of extended Weibull power series distributions , 2012, Comput. Stat. Data Anal..

[157]  Saralees Nadarajah,et al.  A new lifetime distribution , 2014 .

[158]  F. Louzada,et al.  Influence diagnostics for the Weibull-Negative-Binomial regression model with cure rate under latent failure causes , 2015 .

[159]  Hamzeh Torabi,et al.  The gamma-uniform distribution and its applications , 2012, Kybernetika.

[160]  THE MODIFIED EXPONENTIAL-POISSON DISTRIBUTION , 2011 .

[161]  B. Oluyede,et al.  Exponentiated power Lindley–Poisson distribution: Properties and applications , 2017 .

[162]  E. Mahmoudi,et al.  Exponentiated Weibull-Geometric Distribution and its Applications , 2012, 1206.4008.

[163]  S. Loukas,et al.  A lifetime distribution with decreasing failure rate , 1998 .

[164]  J. Behboodian,et al.  The beta Weibull-geometric distribution , 2013 .

[165]  R. King,et al.  A new three parameter transmuted Chen lifetime distribution with application , 2013 .

[166]  G. Cordeiro,et al.  The Beta Extended Weibull Family , 2009 .

[167]  Saralees Nadarajah,et al.  A new family of compound lifetime distributions , 2014, Kybernetika.

[168]  Gauss M. Cordeiro,et al.  A new family of generalized distributions , 2011 .

[169]  J. Ahmadi,et al.  Log-gamma-generated families of distributions , 2014 .

[170]  Montip Tiensuwan,et al.  The Beta Transmuted Weibull Distribution , 2014 .

[171]  Josemar Rodrigues,et al.  On the unification of long-term survival models , 2009 .

[172]  G. Cordeiro,et al.  The Weibull-geometric distribution , 2008, 0809.2703.

[173]  Gauss M. Cordeiro,et al.  A New Long-Term Survival Model with Interval-Censored Data , 2015, Sankhya B.

[174]  N. Balakrishnan,et al.  The gamma-exponentiated exponential distribution , 2012 .

[175]  Bander Al-Zahrani,et al.  The Poisson-Lomax Distribution , 2014 .

[176]  Narayanaswamy Balakrishnan,et al.  EM Algorithm-Based Likelihood Estimation for Some Cure Rate Models , 2012 .

[177]  Qianqian Zhu,et al.  Transmuted Linear Exponential Distribution: A New Generalization of the Linear Exponential Distribution , 2014, Commun. Stat. Simul. Comput..

[178]  Mohammad Ahsanullah,et al.  The Additive Weibull-Geometric Distribution: Theory and Applications , 2016, J. Stat. Theory Appl..

[179]  S. Nadarajah,et al.  A new four-parameter lifetime distribution , 2017 .

[180]  M. R. Mahmoud,et al.  On the Transmuted Frechet Distribution , 2013 .

[181]  Gokarna Aryal,et al.  Transmuted Log-Logistic Distribution , 2013 .

[182]  M. Hussian Transmuted Exponentiated Gamma Distribution: A Generalization of the Exponentiated Gamma Probability Distribution , 2014 .

[183]  Gauss M. Cordeiro,et al.  Generalized Beta-Generated Distributions , 2010, Comput. Stat. Data Anal..

[184]  F. Louzada,et al.  On the Bayesian estimation and influence diagnostics for the Weibull-Negative-Binomial regression model with cure rate under latent failure causes , 2017 .

[185]  The Exponentiated Weibull-Geometric Distribution: Properties and Estimations , 2014 .

[186]  Narayanaswamy Balakrishnan,et al.  On families of beta- and generalized gamma-generated distributions and associated inference , 2009 .

[187]  Gauss M. Cordeiro,et al.  On the Additive Weibull Distribution , 2014 .

[188]  F. Louzada,et al.  A new long-term lifetime distribution induced by a latent complementary risk framework , 2012 .

[189]  Ayman Alzaatreh,et al.  T-normal family of distributions: a new approach to generalize the normal distribution , 2014 .

[190]  A. Hassan,et al.  The Complementary Burr III Poisson Distribution , 2015 .

[191]  Warahena Liyanage,et al.  The Lindley Power Series Class of Distributions: Model, Properties and Applications , 2015 .

[192]  Kaisar Ahmad,et al.  Structural Properties of Transmuted Weibull Distribution , 2015 .

[193]  M. H. Tahir,et al.  The odd generalized exponential family of distributions with applications , 2015 .

[194]  Saralees Nadarajah,et al.  General results for the Kumaraswamy-G distribution , 2012 .

[195]  Vitor A. A. Marchi,et al.  The exponentiated exponential–geometric distribution: a distribution with decreasing, increasing and unimodal failure rate , 2014 .

[196]  Daimin Shi,et al.  A new compounding life distribution: the Weibull–Poisson distribution , 2012 .

[197]  M. Koutras,et al.  Failure Rate and Aging Properties of Generalized Beta- and Gamma-generated Distributions , 2014 .

[198]  Nadeem Shafique Butt,et al.  On Six-Parameter Frechet Distribution: Properties and Applications , 2016 .

[199]  S. Loukas,et al.  On an extension of the exponential-geometric distribution , 2005 .

[200]  THE EXPONENTIAL NEGATIVE BINOMIAL DISTRIBUTION: A CONTINUOUS BRIDGE BETWEEN UNDER AND OVER DISPERSION ON A LIFETIME MODELLING STRUCTURE , 2012 .

[201]  Coskun Kus,et al.  A new lifetime distribution , 2007, Comput. Stat. Data Anal..

[202]  Robert King,et al.  Characterisations of the transmuted inverse Weibull distribution , 2014 .

[203]  Gauss M. Cordeiro,et al.  A model with long-term survivors: negative binomial Birnbaum-Saunders , 2016 .

[204]  S. Ashour,et al.  Transmuted Lomax Distribution , 2013 .

[205]  Francisco Louzada,et al.  The Geometric Birnbaum–Saunders regression model with cure rate , 2012 .

[206]  Gauss M. Cordeiro,et al.  A CLASSE COMPLEMENTAR DE DISTRIBUIÇÕES WEIBULL ESTENDIDA SÉRIES DE POTÊNCIA , 2014 .

[207]  B. Oluyede,et al.  A new compound class of log-logistic Weibull–Poisson distribution: model, properties and applications , 2016 .

[208]  Min Xie,et al.  Reliability analysis using an additive Weibull model with bathtub-shaped failure rate function , 1996 .

[209]  Pelumi E. Oguntunde,et al.  Performance rating of the transmuted exponential distribution: an analytical approach , 2015, SpringerPlus.

[210]  Faton Merovci,et al.  The Transmuted Generalized Inverse Weibull Distribution , 2013, 1309.3268.

[211]  Munir Ahmad,et al.  THE TRANSMUTED EXPONENTIAL-WEIBULL DISTRIBUTION WITH APPLICATIONS , 2015 .

[212]  S. Tahmasebi,et al.  Exponentiated Extended Weibull-power Series class of Distributions , 2015, 1503.08653.

[213]  Two alternative estimation procedures for the negative binomial cure rate model with a latent activation scheme , 2016 .

[214]  Rodrigo Rossetto Pescim,et al.  The new class of Kummer beta generalized distributions: theory and applications , 2013 .

[215]  Francisco Louzada-Neto,et al.  The Power Series Cure Rate Model: An Application to a Cutaneous Melanoma Data , 2013, Commun. Stat. Simul. Comput..

[216]  B. Oluyede,et al.  Kumaraswamy Lindley-Poisson Distribution: Theory and Applications , 2015 .

[217]  D. Kundu,et al.  Theory & Methods: Generalized exponential distributions , 1999 .

[218]  Debasis Kundu,et al.  The generalized exponential cure rate model with covariates , 2010 .

[219]  Robert King,et al.  Transmuted Modified Inverse Rayleigh Distribution , 2015 .

[220]  Maalee N. AlMheidat,et al.  Some Generalized Families of Weibull Distribution: Properties and Applications , 2015 .

[221]  A Generalization of the Exponential-Logarithmic Distribution , 2015 .

[222]  Gauss M. Cordeiro,et al.  The Weibull-G Family of Probability Distributions , 2014, Journal of Data Science.

[223]  Francisco Louzada,et al.  The Poisson-exponential regression model under different latent activation schemes , 2012 .

[224]  Gauss M. Cordeiro,et al.  The gamma extended Weibull family of distributions , 2014, J. Stat. Theory Appl..

[225]  Faton Merovci,et al.  Transmuted Generalized Rayleigh Distribution , 2014 .

[226]  G. G. Hamedani,et al.  The Kumaraswamy-G Poisson Family of Distributions , 2015, J. Stat. Theory Appl..

[227]  G. Cordeiro,et al.  General Results for the Transmuted Family of Distributions and New Models , 2016 .

[228]  Francisco Louzada,et al.  The Transmuted Log-Logistic Distribution: Modeling, Inference, and an Application to a Polled Tabapua Race Time up to First Calving Data , 2015 .

[229]  Transmuted Exponentiated Modified Weibull Distribution , 2013 .

[230]  Gauss M. Cordeiro,et al.  The Transmuted Generalized Gamma Distribution: Properties and Application , 2021, Journal of Data Science.

[231]  G. Cordeiro,et al.  The beta Weibull Poisson distribution , 2013 .

[232]  Eisa Mahmoudi,et al.  Exponentiated Weibull-Poisson distribution: Model, properties and applications , 2012, Math. Comput. Simul..

[233]  Ayman Alzaatreh,et al.  A new method for generating families of continuous distributions , 2013 .

[234]  M. H. Alamatsaz,et al.  Generalized linear failure rate power series distribution , 2016 .

[235]  Debasis Kundu,et al.  Generalized Linear Failure Rate Distribution , 2009 .

[236]  I. Elbatal,et al.  The modified Weibull geometric distribution , 2015 .

[237]  Edson Z. Martinez,et al.  Mixture and non-mixture cure fraction models based on the generalized modified Weibull distribution with an application to gastric cancer data , 2013, Comput. Methods Programs Biomed..

[238]  G. Hamedani,et al.  Another Generalized Transmuted family of distributions:Properties and Applications , 2016 .

[239]  Chris P. Tsokos,et al.  Transmuted Weibull Distribution: A Generalization of theWeibull Probability Distribution , 2011 .

[240]  Gauss M. Cordeiro,et al.  A new distribution with decreasing, increasing and upside-down bathtub failure rate , 2010, Comput. Stat. Data Anal..

[241]  Ammar M. Sarhan,et al.  Modified Weibull distribution. , 2009 .

[242]  Mojtaba Ganjali,et al.  On some lifetime distributions with decreasing failure rate , 2009, Comput. Stat. Data Anal..

[243]  Mavis Pararai,et al.  A Generalized Power Lindley Distribution with Applications , 2014 .

[244]  Manoel Wallace A. Ramos,et al.  The Exponentiated Burr XII Poisson Distribution with Application to Lifetime Data , 2015 .

[245]  M. H. Tahir,et al.  A New Weibull-G Family of Distributions , 2015 .

[246]  H. Bidram,et al.  Double bounded Kumaraswamy-power series class of distributions , 2013 .

[247]  A. Hassan,et al.  The Complementary Exponentiated Inverted Weibull Power Series Family of Distributions and its Applications , 2016 .

[248]  Ahmed Z. Afify,et al.  The Transmuted Exponentiated Generalized-G Family of Distributions , 2015 .

[249]  I. Elbatal,et al.  Transmuted Quasi Lindley Distribution: A Generalization of the Quasi Lindley Distribution , 2013 .

[250]  F. Louzada,et al.  On the Distribution of the Minimum or Maximum of a Random Number of i.i.d. Lifetime Random Variables , 2012 .