A comparison of random forest and Adaboost tree in ecosystem classification in east Mojave Desert

We compared two basic ensemble methods, namely random forest and Adaboost tree for the classification of ecosystems in Clark County, Nevada, USA through multitemporal multisource LANDSAT TM/ETM+ images and terrain-related GIS data layers. Random forest generates decision trees by randomly selecting a limited number features from all available features for node splitting, and each tree cast a vote for the final decision. On the other hand, Adaboost tree is an iterative approach to improve the performance of a weak classifier by assigning weights to training samples, and incorrectly classified training samples will gain a larger weight in the process. We discuss the properties of these two tree-based ensemble methods and compare their classification performances in ecosystem classification. The results show that Adaboost tree can provide higher classification accuracy than random forest in multitemporal multisource dataset, while the latter could be more efficient in computation.

[1]  Leo Breiman,et al.  Classification and Regression Trees , 1984 .

[2]  Rick L. Lawrence,et al.  Mapping invasive plants using hyperspectral imagery and Breiman Cutler classifications (RandomForest) , 2006 .

[3]  R. D. Ramsey,et al.  Mapping moderate-scale land-cover over very large geographic areas within a collaborative framework : A case study of the Southwest Regional Gap Analysis Project (SWReGAP) , 2007 .

[4]  Trevor Hastie,et al.  The Elements of Statistical Learning , 2001 .

[5]  Robert E. Schapire,et al.  The strength of weak learnability , 1990, Mach. Learn..

[6]  S. Goetz,et al.  Large-Scale Patterns of Forest Succession as Determined by Remote Sensing , 1991 .

[7]  Alan H. Strahler,et al.  Maximizing land cover classification accuracies produced by decision trees at continental to global scales , 1999, IEEE Trans. Geosci. Remote. Sens..

[8]  Y. Freund,et al.  Discussion of the Paper \additive Logistic Regression: a Statistical View of Boosting" By , 2000 .

[9]  Björn Waske,et al.  Classifier ensembles for land cover mapping using multitemporal SAR imagery , 2009 .

[10]  Philip S. Yu,et al.  Top 10 algorithms in data mining , 2007, Knowledge and Information Systems.

[11]  D. Beaudette,et al.  Quantifying the Aspect Effect: An Application of Solar Radiation Modeling for Soil Survey , 2009 .

[12]  Aiko M. Hormann,et al.  Programs for Machine Learning. Part I , 1962, Inf. Control..

[13]  Leo Breiman,et al.  Random Forests , 2001, Machine Learning.

[14]  C. Brodley,et al.  Decision tree classification of land cover from remotely sensed data , 1997 .

[15]  Janet Franklin,et al.  Mapping land-cover modifications over large areas: A comparison of machine learning algorithms , 2008 .

[16]  R. DeFries,et al.  Classification trees: an alternative to traditional land cover classifiers , 1996 .

[17]  Jonathan Cheung-Wai Chan,et al.  Multiple Criteria for Evaluating Machine Learning Algorithms for Land Cover Classification from Satellite Data , 2000 .

[18]  Yoram Singer,et al.  Improved Boosting Algorithms Using Confidence-rated Predictions , 1998, COLT' 98.

[19]  Leo Breiman,et al.  Bagging Predictors , 1996, Machine Learning.

[20]  J. Townshend,et al.  Global land cover classi(cid:142) cation at 1 km spatial resolution using a classi(cid:142) cation tree approach , 2004 .

[21]  D. Roberts,et al.  A comparison of methods for monitoring multitemporal vegetation change using Thematic Mapper imagery , 2002 .

[22]  Trevor Hastie,et al.  Multi-class AdaBoost ∗ , 2009 .

[23]  M. Pal,et al.  Random forests for land cover classification , 2003, IGARSS 2003. 2003 IEEE International Geoscience and Remote Sensing Symposium. Proceedings (IEEE Cat. No.03CH37477).

[24]  Jonathan Cheung-Wai Chan,et al.  Evaluation of random forest and adaboost tree-based ensemble classification and spectral band selection for ecotope mapping using airborne hyperspectral imagery , 2008 .

[25]  Johannes R. Sveinsson,et al.  Multiple classifiers applied to multisource remote sensing data , 2002, IEEE Trans. Geosci. Remote. Sens..

[26]  Lawrence O. Hall,et al.  A Comparison of Decision Tree Ensemble Creation Techniques , 2007 .

[27]  Paul M. Mather,et al.  An assessment of the effectiveness of decision tree methods for land cover classification , 2003 .

[28]  E Brown de Colstoun,et al.  National Park vegetation mapping using multitemporal Landsat 7 data and a decision tree classifier , 2003 .

[29]  Jeroen C. J. H. Aerts,et al.  Using multi-criterion optimization to classify ecosystems from multi temporal imagery , 1996 .