The MOEADr Package - A Component-Based Framework for Multiobjective Evolutionary Algorithms Based on Decomposition

Multiobjective Evolutionary Algorithms based on Decomposition (MOEA/D) represent a widely used class of population-based metaheuristics for the solution of multicriteria optimization problems. We introduce the MOEADr package, which offers many of these variants as instantiations of a component-oriented framework. This approach contributes for easier reproducibility of existing MOEA/D variants from the literature, as well as for faster development and testing of new composite algorithms. The package offers an standardized, modular implementation of MOEA/D based on this framework, which was designed aiming at providing researchers and practitioners with a standard way to discuss and express MOEA/D variants. In this paper we introduce the design principles behind the MOEADr package, as well as its current components. Three case studies are provided to illustrate the main aspects of the package.

[1]  Frederico G. Guimarães,et al.  Local Search with Quadratic Approximations into Memetic Algorithms for Optimization with Multiple Criteria , 2008, Evolutionary Computation.

[2]  Bernhard Sendhoff,et al.  A Reference Vector Guided Evolutionary Algorithm for Many-Objective Optimization , 2016, IEEE Transactions on Evolutionary Computation.

[3]  Hisao Ishibuchi,et al.  Simultaneous use of different scalarizing functions in MOEA/D , 2010, GECCO '10.

[4]  Felipe Campelo,et al.  MOEADr: Component-Wise MOEA/D Implementation , 2017 .

[5]  Hisao Ishibuchi,et al.  Relation between Neighborhood Size and MOEA/D Performance on Many-Objective Problems , 2013, EMO.

[6]  Tapabrata Ray,et al.  An adaptive constraint handling approach embedded MOEA/D , 2012, 2012 IEEE Congress on Evolutionary Computation.

[7]  Kaisa Miettinen,et al.  Nonlinear multiobjective optimization , 1998, International series in operations research and management science.

[8]  Thomas Stützle,et al.  Automatic Component-Wise Design of Multiobjective Evolutionary Algorithms , 2016, IEEE Transactions on Evolutionary Computation.

[9]  K. Deb An Efficient Constraint Handling Method for Genetic Algorithms , 2000 .

[10]  KalyanmoyDebandSamirAgrawal KanpurGeneticAlgorithmsLaboratory,et al.  A Niched-Penalty Approach for Constraint Handling in Genetic Algorithms , 2002 .

[11]  Qingfu Zhang,et al.  The performance of a new version of MOEA/D on CEC09 unconstrained MOP test instances , 2009, 2009 IEEE Congress on Evolutionary Computation.

[12]  Hiroyuki Sato,et al.  Inverted PBI in MOEA/D and its impact on the search performance on multi and many-objective optimization , 2014, GECCO.

[13]  Hiroyuki Sato,et al.  Analysis of inverted PBI and comparison with other scalarizing functions in decomposition based MOEAs , 2015, J. Heuristics.

[14]  Qingfu Zhang,et al.  An Evolutionary Many-Objective Optimization Algorithm Based on Dominance and Decomposition , 2015, IEEE Transactions on Evolutionary Computation.

[15]  Qingfu Zhang,et al.  Stable Matching-Based Selection in Evolutionary Multiobjective Optimization , 2014, IEEE Transactions on Evolutionary Computation.

[16]  Olaf Mersmann Multiple Criteria Optimization Algorithms and Related Functions , 2014 .

[17]  Tao Zhang,et al.  An enhanced MOEA/D using uniform directions and a pre-organization procedure , 2013, 2013 IEEE Congress on Evolutionary Computation.

[18]  Jakob Bossek,et al.  ecr 2.0: a modular framework for evolutionary computation in R , 2017, GECCO.

[19]  Gary B. Lamont,et al.  Evolutionary Algorithms for Solving Multi-Objective Problems , 2002, Genetic Algorithms and Evolutionary Computation.

[20]  Tsung-Che Chiang,et al.  MOEA/D-AMS: Improving MOEA/D by an adaptive mating selection mechanism , 2011, 2011 IEEE Congress of Evolutionary Computation (CEC).

[21]  Thomas Stützle,et al.  To DE or Not to DE? Multi-objective Differential Evolution Revisited from a Component-Wise Perspective , 2015, EMO.

[22]  Rainer Storn,et al.  Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces , 1997, J. Glob. Optim..

[23]  H. Scheffé Experiments with Mixtures , 1958 .

[24]  Tapabrata Ray,et al.  A Decomposition-Based Evolutionary Algorithm for Many Objective Optimization , 2015, IEEE Transactions on Evolutionary Computation.

[25]  Fang Liu,et al.  MOEA/D with Adaptive Weight Adjustment , 2014, Evolutionary Computation.

[26]  Roman Neruda,et al.  Incorporating User Preferences in MOEA/D through the Coevolution of Weights , 2015, GECCO.

[27]  Antonio J. Nebro,et al.  Redesigning the jMetal Multi-Objective Optimization Framework , 2015, GECCO.

[28]  Carlos Artemio Coello-Coello,et al.  Theoretical and numerical constraint-handling techniques used with evolutionary algorithms: a survey of the state of the art , 2002 .

[29]  Shengxiang Yang,et al.  An Improved Multiobjective Optimization Evolutionary Algorithm Based on Decomposition for Complex Pareto Fronts , 2016, IEEE Transactions on Cybernetics.

[30]  Hong Li,et al.  A modification to MOEA/D-DE for multiobjective optimization problems with complicated Pareto sets , 2012, Inf. Sci..

[31]  Jakob Bossek,et al.  smoof: Single- and Multi-Objective Optimization Test Functions , 2017, R J..

[32]  Xiaodong Li,et al.  Reference point based multi-objective optimization through decomposition , 2012, 2012 IEEE Congress on Evolutionary Computation.

[33]  Dirk V. Arnold,et al.  Comparison of Constraint-Handling Mechanisms for the (1,λ)-ES on a Simple Constrained Problem , 2016, Evolutionary Computation.

[34]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[35]  Qingfu Zhang,et al.  A replacement strategy for balancing convergence and diversity in MOEA/D , 2014, 2014 IEEE Congress on Evolutionary Computation (CEC).

[36]  Qingfu Zhang,et al.  Interrelationship-Based Selection for Decomposition Multiobjective Optimization , 2015, IEEE Transactions on Cybernetics.

[37]  Yu Wu,et al.  An Adaptive Stochastic Ranking Mechanism in MOEA/D for Constrained Multi-objective Optimization , 2016, 2016 International Conference on Information System and Artificial Intelligence (ISAI).

[38]  Ling-Yau Chan,et al.  Optimal designs for experiments with mixtures: a survey , 2000 .

[39]  Dennis K. J. Lin,et al.  Ch. 4. Uniform experimental designs and their applications in industry , 2003 .

[40]  Peter J. Fleming,et al.  Generalized decomposition and cross entropy methods for many-objective optimization , 2014, Inf. Sci..

[41]  R. K. Ursem Multi-objective Optimization using Evolutionary Algorithms , 2009 .

[42]  Fernanda C. Takahashi,et al.  Robust multiobjective optimization using regression models and linear subproblems , 2017, GECCO.

[43]  Marco Laumanns,et al.  Performance assessment of multiobjective optimizers: an analysis and review , 2003, IEEE Trans. Evol. Comput..

[44]  Bjarne Stroustrup,et al.  C++ Programming Language , 1986, IEEE Softw..

[45]  Tapabrata Ray,et al.  A Pareto Corner Search Evolutionary Algorithm and Dimensionality Reduction in Many-Objective Optimization Problems , 2011, IEEE Transactions on Evolutionary Computation.

[46]  Xin Yao,et al.  Stochastic ranking for constrained evolutionary optimization , 2000, IEEE Trans. Evol. Comput..

[47]  Qingfu Zhang,et al.  Multiobjective Optimization Problems With Complicated Pareto Sets, MOEA/D and NSGA-II , 2009, IEEE Transactions on Evolutionary Computation.

[48]  Qingfu Zhang,et al.  MOEA/D: A Multiobjective Evolutionary Algorithm Based on Decomposition , 2007, IEEE Transactions on Evolutionary Computation.

[49]  T. Stützle,et al.  Automatic Component-wise Design of Multi-Objective Evolutionary Algorithms , 2014 .

[50]  Kalyanmoy Deb,et al.  Self-Adaptive Genetic Algorithms with Simulated Binary Crossover , 2001, Evolutionary Computation.

[51]  Dirk V. Arnold,et al.  Weighted multirecombination evolution strategies , 2006, Theor. Comput. Sci..

[52]  Felipe Campelo,et al.  Preference-guided evolutionary algorithms for many-objective optimization , 2016, Inf. Sci..

[53]  R. Storn,et al.  Differential Evolution: A Practical Approach to Global Optimization (Natural Computing Series) , 2005 .

[54]  Guy L. Steele,et al.  The Java Language Specification , 1996 .

[55]  Qingfu Zhang,et al.  Adaptive Operator Selection With Bandits for a Multiobjective Evolutionary Algorithm Based on Decomposition , 2014, IEEE Transactions on Evolutionary Computation.

[56]  Qingfu Zhang,et al.  Interactive MOEA/D for multi-objective decision making , 2011, GECCO '11.

[57]  Kalyanmoy Deb,et al.  An Evolutionary Many-Objective Optimization Algorithm Using Reference-Point-Based Nondominated Sorting Approach, Part I: Solving Problems With Box Constraints , 2014, IEEE Transactions on Evolutionary Computation.

[58]  Leslie Pérez Cáceres,et al.  The irace package: Iterated racing for automatic algorithm configuration , 2016 .

[59]  Wenhua Zeng,et al.  A New Local Search-Based Multiobjective Optimization Algorithm , 2015, IEEE Transactions on Evolutionary Computation.

[60]  Dipti Srinivasan,et al.  A Survey of Multiobjective Evolutionary Algorithms Based on Decomposition , 2017, IEEE Transactions on Evolutionary Computation.

[61]  John E. Dennis,et al.  Normal-Boundary Intersection: A New Method for Generating the Pareto Surface in Nonlinear Multicriteria Optimization Problems , 1998, SIAM J. Optim..

[62]  Yang Li,et al.  An MOEA/D with multiple differential evolution mutation operators , 2014, 2014 IEEE Congress on Evolutionary Computation (CEC).

[63]  Lucas S. Batista,et al.  A Preference-guided Multiobjective Evolutionary Algorithm based on Decomposition , 2017 .