State-Space Modeling of Long-Range Dependent Teletraffic

This paper develops a new state-space model for long-range dependent (LRD) teletraffic. A key advantage of the state-space approach is that forecasts can be performed on-line via the Kalman predictor. The new model is a finite-dimensional (i. e., truncated) state-space representation of the FARIMA (fractional autoregressive integrated moving average) process. Furthermore, we investigate, via simulations, the multistep ahead forecasts obtained from the new model and compare them with those achieved by fitting high-order autoregressive (AR) models.

[1]  Ruey S. Tsay,et al.  Analysis of Financial Time Series: Tsay/Analysis of Financial Time Series , 2005 .

[2]  C. Granger,et al.  AN INTRODUCTION TO LONG‐MEMORY TIME SERIES MODELS AND FRACTIONAL DIFFERENCING , 1980 .

[3]  Edward W. Knightly,et al.  Measurement-based admission control with aggregate traffic envelopes , 2001, TNET.

[4]  Walter Willinger,et al.  Experimental queueing analysis with long-range dependent packet traffic , 1996, TNET.

[5]  Kenneth E. Barner,et al.  Nonlinear Signal and Image Processing: Theory, Methods, and Applications , 2003 .

[6]  B. Mandelbrot,et al.  Fractional Brownian Motions, Fractional Noises and Applications , 1968 .

[7]  K. Ab-Hamid,et al.  Kalman prediction method for congestion avoidance in ATM networks , 2000, 2000 TENCON Proceedings. Intelligent Systems and Technologies for the New Millennium (Cat. No.00CH37119).

[8]  Oliver W. W. Yang,et al.  Traffic prediction using FARIMA models , 1999, 1999 IEEE International Conference on Communications (Cat. No. 99CH36311).

[9]  J. Woods,et al.  Probability and Random Processes with Applications to Signal Processing , 2001 .

[10]  Athina P. Petropulu,et al.  Data traffic modeling—A signal processing perspective , 2003 .

[11]  Murad S. Taqqu,et al.  Theory and applications of long-range dependence , 2003 .

[12]  Zhou Yuan-hua,et al.  Kalman optimized model for MPEG-4 VBR sources , 2004 .

[13]  Jiahui Wang,et al.  Modeling Financial Time Series with S-PLUS® , 2003 .

[14]  H. Akaike,et al.  Information Theory and an Extension of the Maximum Likelihood Principle , 1973 .

[15]  A. Walden,et al.  Wavelet Methods for Time Series Analysis , 2000 .

[16]  A. Kolarov,et al.  Application of Kalman filter in high-speed networks , 1994, 1994 IEEE GLOBECOM. Communications: The Global Bridge.

[17]  Stefano Giordano,et al.  Analysis of f-ARIMA processes in the modelling of broadband traffic , 2001, ICC 2001. IEEE International Conference on Communications. Conference Record (Cat. No.01CH37240).

[18]  Jan Beran,et al.  Statistics for long-memory processes , 1994 .

[19]  David S. Stoffer Time series analysis by state space models: J. Durbin and S. J. Koopman; Oxford University Press, Oxford, 2001, pp 253 + xvii, ISBN: 0 19 852354 8 , 2003, Autom..

[20]  Walter Willinger,et al.  On the self-similar nature of Ethernet traffic , 1993, SIGCOMM '93.

[21]  Neville Davies,et al.  Time Series Models, 2nd Edn. , 1995 .

[22]  Alireza Khotanzad,et al.  ATM dynamic bandwidth allocation using F-ARIMA prediction model , 2003, Proceedings. 12th International Conference on Computer Communications and Networks (IEEE Cat. No.03EX712).

[23]  R. J. Bhansali,et al.  On unified model selection for stationary and nonstationary short- and long-memory autoregressive processes , 1998 .

[24]  Sally Floyd,et al.  Wide area traffic: the failure of Poisson modeling , 1995, TNET.

[25]  Ruey S. Tsay,et al.  Analysis of Financial Time Series , 2005 .

[26]  H. E. Hurst,et al.  Long-Term Storage Capacity of Reservoirs , 1951 .

[27]  A. Harvey Time series models , 1983 .

[28]  J. Amazonas,et al.  Generation of Gaussian Self-similar series via Wavelets for Use in Traffic Simulations , 2007 .

[29]  Jan Beran,et al.  SEMIFAR models|a semiparametric approach to modelling trends , 2002 .

[30]  Donald B. Percival,et al.  Spectral Analysis for Physical Applications , 1993 .

[31]  Oliver W. W. Yang,et al.  Prediction-based admission control using FARIMA models , 2000, 2000 IEEE International Conference on Communications. ICC 2000. Global Convergence Through Communications. Conference Record.

[32]  Jacek Ilow Forecasting network traffic using FARIMA models with heavy tailed innovations , 2000, 2000 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings (Cat. No.00CH37100).

[33]  Gwilym M. Jenkins,et al.  Time series analysis, forecasting and control , 1972 .

[34]  R. E. Kalman,et al.  A New Approach to Linear Filtering and Prediction Problems , 2002 .