Modeling liquid–vapor phase change experiments: Cryogenic hydrogen and methane

[1]  D. Jacobson,et al.  Results from neutron imaging phase change experiments with LH2 and LCH4 , 2022, Cryogenics.

[2]  D. Jacobson,et al.  Data from cryo-neutron phase change experiments with LH2 and LCH4 , 2022, Data in brief.

[3]  K. Bellur,et al.  Drifting mass accommodation coefficients: in situ measurements from a steady state molecular dynamics setup , 2020, 2003.01022.

[4]  C. Choi,et al.  Multiscale approach to model steady meniscus evaporation in a wetting fluid , 2020 .

[5]  S. Collicott,et al.  Estimation of Thin-Film Contribution in Phase Change Calculations Involving Cryogenic Propellants , 2019, Journal of Spacecraft and Rockets.

[6]  Paul L. Barclay,et al.  Curvature Dependence of the Mass Accommodation Coefficient. , 2019, Langmuir : the ACS journal of surfaces and colloids.

[7]  C. Choi,et al.  Determining solid-fluid interface temperature distribution during phase change of cryogenic propellants using transient thermal modeling , 2018 .

[8]  T. Biben,et al.  Molecular simulation of steady-state evaporation and condensation: Validity of the Schrage relationships , 2017 .

[9]  J. M. Oliver,et al.  Kinetic effects regularize the mass-flux singularity at the contact line of a thin evaporating drop , 2017, Journal of Engineering Mathematics.

[10]  S. Heister,et al.  Numerical Approach to Measure Accommodation Coefficients for Long-Duration Spaceflight Cryogenic Propellants , 2016 .

[11]  C. A. Ward,et al.  Expressions for the Evaporation and Condensation Coefficients in the Hertz-Knudsen Relation. , 2016, Chemical reviews.

[12]  M. Kassemi,et al.  Effect of Interfacial Turbulence and Accommodation Coefficient on CFD Predictions of Pressurization and Pressure Control in Cryogenic Storage Tank , 2016 .

[13]  D. Jacobson,et al.  A New Experiment for Investigating Evaporation and Condensation of Cryogenic Propellants. , 2016, Cryogenics.

[14]  D. Jacobson,et al.  Contact Angle Measurement of Liquid Hydrogen (LH2) in Stainless Steel and Aluminum Cells , 2016 .

[15]  R. Hołyst,et al.  A molecular dynamics test of the Hertz-Knudsen equation for evaporating liquids. , 2015, Soft matter.

[16]  M. Kassemi,et al.  CFD Modeling of the Multipurpose Hydrogen Test Bed (MHTB) Self-Pressurization and Spray Bar Mixing Experiments in Normal Gravity: Effect of the Accommodation Coefficient on the Tank Pressure , 2015 .

[17]  Stephen D. Heister,et al.  Experiment Design for Measuring Accommodation Coefficients for Modeling of Long-Duration Spaceflight Cryogenic Propellants , 2015 .

[18]  Hirotaka Mizuguchi,et al.  Molecular dynamics study on condensation/evaporation coefficients of chain molecules at liquid-vapor interface. , 2015, The Journal of chemical physics.

[19]  Michael Dreyer,et al.  Investigations on thermodynamic phenomena of the active-pressurization process of a cryogenic propellant tank , 2014 .

[20]  Jadran Vrabec,et al.  Evaporation from a free liquid surface , 2014 .

[21]  Charles E Kolb,et al.  Update 1 of: Mass accommodation and chemical reactions at gas-liquid interfaces. , 2011, Chemical reviews.

[22]  G. Grest,et al.  Evaporation of Lennard-Jones fluids. , 2011, The Journal of chemical physics.

[23]  Charles E. Kolb,et al.  An overview of current issues in the uptake of atmospheric trace gases by aerosols and clouds , 2010 .

[24]  Alina A. Alexeenko,et al.  Modeling of Subcontinuum Thermal Transport Across Semiconductor-Gas Interfaces , 2009 .

[25]  C. Grigoropoulos,et al.  A Review of Heat Transfer Physics , 2008 .

[26]  F. Durst,et al.  Experimental and theoretical investigations on interfacial temperature jumps during evaporation , 2007 .

[27]  G. Burrows Evaporation at low pressures , 2007 .

[28]  E. J. Davis,et al.  A history and state-of-the-art of accommodation coefficients , 2006 .

[29]  Timo Vesala,et al.  Condensation of water vapor: Experimental determination of mass and thermal accommodation coefficients , 2006 .

[30]  D. M. Pratt,et al.  Microscale Heat and Mass Transport of Evaporating Thin Film of Binary Mixture , 2006 .

[31]  Charles E. Kolb,et al.  Mass accommodation coefficient of water vapor on liquid water , 2004 .

[32]  Takaharu Tsuruta,et al.  A general expression for the condensation coefficient based on transition state theory and molecular dynamics simulation , 2003 .

[33]  A. Juárez,et al.  DESIGN NOTE: A compact catalytic converter for the production of para-hydrogen , 2002 .

[34]  Peter C. Wayner,et al.  Intermolecular forces in phase‐change heat transfer: 1998 Kern award review , 1999 .

[35]  I. Eames,et al.  The evaporation coefficient of water: a review , 1997 .

[36]  S. A. Sherif,et al.  Liquid hydrogen: Potential, problems, and a proposed research program , 1997 .

[37]  P. Wayner,et al.  An augmented Young-Laplace model of an evaporating meniscus in a microchannel with high heat flux , 1995 .

[38]  Peter C. Wayner,et al.  Use of the Kelvin-Clapeyron Equation to Model an Evaporating Curved Microfilm , 1994 .

[39]  N. Tro,et al.  Condensation and evaporation of water on ice surfaces , 1992 .

[40]  J. Barrett,et al.  Kinetic evaporation and condensation rates and their coefficients , 1992 .

[41]  J. Klett,et al.  Microphysics of Clouds and Precipitation , 1978, Nature.

[42]  J. Fenn,et al.  Absolute evaporation rates for some polar and nonpolar liquids , 1977 .

[43]  P. Wayner,et al.  The interline heat-transfer coefficient of an evaporating wetting film , 1976 .

[44]  A. M. Sinnarwalla,et al.  Measurement of Growth Rate to Determine Condensation Coefficients for Water Drops Grown on Natural Cloud Nuclei , 1975 .

[45]  G. Burrows Notes on some features of high-vacuum distillation , 1973 .

[46]  P. Wayner,et al.  Evaporation from a two-dimensional extended meniscus , 1972 .

[47]  H. Cammenga,et al.  Untersuchungen über die Verdampfungs-Geschwindigkeit von Flüssigkeiten , 1971, Fortschrittsberichte über Kolloide und Polymere.

[48]  J. Zung,et al.  Evaporation—Condensation Coefficient for Small Droplets , 1967 .

[49]  G. Burrows Evaporation in an evacuated container , 1965 .

[50]  B. Paul Compilation of Evaporation Coefficients , 1962 .

[51]  F. Maslan,et al.  Compressibility Chart for Hydrogen and Inert Gases , 1953 .

[52]  T. Alty,et al.  The Accommodation Coefficient and the Evaporation Coefficient of Water , 1935 .

[53]  T. Alty The Reflection of Vapour Molecules at a Liquid Surface , 1931 .

[54]  T. Alty,et al.  THE INTERCHANGE OF MOLECULES BETWEEN A LIQUID AND ITS VAPOR , 1931 .

[55]  D. Jacobson,et al.  VISUALIZATION OF THE EVAPORATION AND CONDENSATION PHENOMENA IN CRYOGENIC PROPELLANTS , 2016 .

[56]  U. Gross,et al.  A New Facility for the Experimental Investigation on Nano Heat Transfer between Gas Molecules and Ceramic Surfaces , 2015 .

[57]  J. Straub,et al.  Analysis of the evaporation coefficient and the condensation coefficient of water , 2001 .

[58]  D. M. Pratt,et al.  Thermocapillary Effects on the Wetting Characteristics of a Heated Curved Meniscus , 1997 .

[59]  P. Wayner The effect of interfacial mass transport on flow in thin liquid films , 1991 .

[60]  M. Mozurkewich,et al.  Aerosol Growth and the Condensation Coefficient for Water: A Review , 1986 .

[61]  J. Kaplon,et al.  Evaporation rate of a liquid from the surface of a rotating disc in high vacuum , 1986 .

[62]  G. T. Barnes The effects of monolayers on the evaporation of liquids , 1986 .

[63]  J. Maa The role of interfaces in heat transfer processes , 1983 .

[64]  L. L. Levenson,et al.  Condensation coefficient measurements of H2O, N2O, and CO2 , 1974 .

[65]  L. L. Levenson,et al.  High-Precision Measurements of Condensation Coefficients. Results for Carbon Dioxide and Water Molecules , 1972 .

[66]  M. Knudsen,et al.  Die maximale Verdampfungsgeschwindigkeit des Quecksilbers , 1915 .

[67]  H. Hertz,et al.  Ueber die Verdunstung der Flüssigkeiten, insbesondere des Quecksilbers, im luftleeren Raume , 1882 .