X-ray crystal structure of the light-independent protochlorophyllide reductase

[1]  Y. Kimura,et al.  Stereochemical determination of the unique acrylate moiety at the 17-position in chlorophylls-c from a diatom Chaetoseros calcitrans and its effect upon electronic absorption properties. , 2009, Organic & biomolecular chemistry.

[2]  J. W. Peters,et al.  Crystal structure of the L protein of Rhodobacter sphaeroides light-independent protochlorophyllide reductase with MgADP bound: a homologue of the nitrogenase Fe protein. , 2008, Biochemistry.

[3]  T. Masuda,et al.  Regulation and evolution of chlorophyll metabolism , 2008, Photochemical & photobiological sciences : Official journal of the European Photochemistry Association and the European Society for Photobiology.

[4]  Jiro Nomata,et al.  Functional expression of nitrogenase-like protochlorophyllide reductase from Rhodobacter capsulatus in Escherichia coli , 2008, Photochemical & photobiological sciences : Official journal of the European Photochemistry Association and the European Society for Photobiology.

[5]  S. Pollmann,et al.  Photoprotective role of NADPH:protochlorophyllide oxidoreductase A , 2008, Proceedings of the National Academy of Sciences.

[6]  D. Jahn,et al.  ATP-driven Reduction by Dark-operative Protochlorophyllide Oxidoreductase from Chlorobium tepidum Mechanistically Resembles Nitrogenase Catalysis* , 2008, Journal of Biological Chemistry.

[7]  Jiro Nomata,et al.  NB‐protein (BchN–BchB) of dark‐operative protochlorophyllide reductase is the catalytic component containing oxygen‐tolerant Fe–S clusters , 2008, FEBS letters.

[8]  R. Tanaka,et al.  Tetrapyrrole biosynthesis in higher plants. , 2007, Annual review of plant biology.

[9]  Jiro Nomata,et al.  Nitrogenase Fe protein‐like Fe–S cluster is conserved in L‐protein (BchL) of dark‐operative protochlorophyllide reductase from Rhodobacter capsulatus , 2006, FEBS letters.

[10]  H. Scheer,et al.  Chlorophylls and Bacteriochlorophylls , 2006 .

[11]  W. Rüdiger Biosynthesis of Chlorophylls a and b: The Last Steps , 2006 .

[12]  C. Hunter,et al.  Making light work of enzyme catalysis: protochlorophyllide oxidoreductase. , 2005, Trends in biochemical sciences.

[13]  Jiro Nomata,et al.  Overexpression and characterization of dark-operative protochlorophyllide reductase from Rhodobacter capsulatus. , 2005, Biochimica et biophysica acta.

[14]  Kevin Cowtan,et al.  research papers Acta Crystallographica Section D Biological , 2005 .

[15]  T. Masuda,et al.  Novel Insights into the Enzymology, Regulation and Physiological Functions of Light-dependent Protochlorophyllide Oxidoreductase in Angiosperms , 2004, Photosynthesis Research.

[16]  G Bricogne,et al.  Generation, representation and flow of phase information in structure determination: recent developments in and around SHARP 2.0. , 2003, Acta crystallographica. Section D, Biological crystallography.

[17]  Kevin M. Smith,et al.  Chlorophylls and bilins : biosynthesis, synthesis, and degradation , 2003 .

[18]  Thomas C Terwilliger,et al.  SOLVE and RESOLVE: automated structure solution and density modification. , 2003, Methods in enzymology.

[19]  D. Rees,et al.  Nitrogenase MoFe-Protein at 1.16 Å Resolution: A Central Ligand in the FeMo-Cofactor , 2002, Science.

[20]  D. Rees,et al.  Structure of a Cofactor-Deficient Nitrogenase MoFe Protein , 2002, Science.

[21]  Y. Ogawara,et al.  Characterization and cloning of an extremely thermostable, Pyrococcus furiosus-type 4Fe ferredoxin from Thermococcus profundus. , 2001, Journal of biochemistry.

[22]  C. Bauer,et al.  Reconstitution of Light-independent Protochlorophyllide Reductase from Purified Bchl and BchN-BchB Subunits , 2000, The Journal of Biological Chemistry.

[23]  Christopher C. Moser,et al.  Natural engineering principles of electron tunnelling in biological oxidation–reduction , 1999, Nature.

[24]  M. Timko,et al.  Protochlorophyllide oxidoreductase B-catalyzed protochlorophyllide photoreduction in vitro: insight into the mechanism of chlorophyll formation in light-adapted plants. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[25]  鈴木 崇紀,et al.  苔類培養細胞における protochlorophyllide oxidoreductase 遺伝子の構造解析とその光反応性 , 1997 .

[26]  Helmut Beinert,et al.  ACONITASE AS IRON-SULFUR PROTEIN, ENZYME, AND IRON-REGULATORY PROTEIN , 1996 .

[27]  Nikolai Lebedev,et al.  Evolution of Chlorophyll Biosynthesis—The Challenge to Survive Photooxidation , 1996, Cell.

[28]  J. Abrahams,et al.  Methods used in the structure determination of bovine mitochondrial F1 ATPase. , 1996, Acta crystallographica. Section D, Biological crystallography.

[29]  M. Adams,et al.  1H NMR investigation of the electronic and molecular structure of the four-iron cluster ferredoxin from the hyperthermophile Pyrococcus furiosus. Identification of Asp 14 as a cluster ligand in each of the four redox states. , 1995, Biochemistry.

[30]  D. von Wettstein,et al.  Chlorophyll Biosynthesis. , 1995, The Plant cell.

[31]  J M Thornton,et al.  LIGPLOT: a program to generate schematic diagrams of protein-ligand interactions. , 1995, Protein engineering.

[32]  H. Wilks,et al.  A light-dependent complementation system for analysis of NADPH:protochlorophyllide oxidoreductase: identification and mutagenesis of two conserved residues that are essential for enzyme activity. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[33]  Collaborative Computational,et al.  The CCP4 suite: programs for protein crystallography. , 1994, Acta crystallographica. Section D, Biological crystallography.

[34]  D C Rees,et al.  Structural models for the metal centers in the nitrogenase molybdenum-iron protein. , 1992, Science.

[35]  W. Brill,et al.  Isolation of an iron-molybdenum cofactor from nitrogenase. , 1977, Proceedings of the National Academy of Sciences of the United States of America.