Sharp H1-norm error estimate of a cosine pseudo-spectral scheme for 2D reaction-subdiffusion equations

A finite difference cosine pseudo-spectral scheme is presented for solving a linear reaction-subdiffusion problem with Neumann boundary conditions. The nonuniform version of L1 formula is employed for approximating the Caputo fractional derivative, and a cosine pseudo-spectral approximation is utilized in spatial discretization. With the help of discrete fractional Grönwall inequality and global consistency analysis, sharp H1-norm error estimate reflecting the regularity of solution is verified for the proposed method. A fast algorithm is implemented in computation and numerical results confirm the sharpness of our analysis.

[1]  Xuan Zhao,et al.  A box-type scheme for fractional sub-diffusion equation with Neumann boundary conditions , 2011, J. Comput. Phys..

[2]  Chuanju Xu,et al.  Finite difference/spectral approximations for the time-fractional diffusion equation , 2007, J. Comput. Phys..

[3]  Yushun Wang,et al.  Multi-symplectic Fourier pseudospectral method for the Kawahara equation , 2014 .

[4]  J. Klafter,et al.  The random walk's guide to anomalous diffusion: a fractional dynamics approach , 2000 .

[5]  Jose L. Gracia,et al.  Error Analysis of a Finite Difference Method on Graded Meshes for a Time-Fractional Diffusion Equation , 2017, SIAM J. Numer. Anal..

[6]  Bangti Jin,et al.  An analysis of the L1 Scheme for the subdiffusion equation with nonsmooth data , 2015, 1501.00253.

[7]  Jiwei Zhang,et al.  A Discrete Grönwall Inequality with Applications to Numerical Schemes for Subdiffusion Problems , 2018, SIAM J. Numer. Anal..

[8]  Xuan Zhao,et al.  Compact difference scheme for the fractional sub-diffusion equation with Neumann boundary conditions , 2013, J. Comput. Phys..

[9]  Fawang Liu,et al.  A Fourier method for the fractional diffusion equation describing sub-diffusion , 2007, J. Comput. Phys..

[10]  Jiwei Zhang,et al.  A Second-Order Scheme with Nonuniform Time Steps for a Linear Reaction-Subdiffusion Problem , 2018, Communications in Computational Physics.

[11]  Masahiro Yamamoto,et al.  Initial value/boundary value problems for fractional diffusion-wave equations and applications to some inverse problems , 2011 .

[12]  Jiwei Zhang,et al.  Sharp Error Estimate of the Nonuniform L1 Formula for Linear Reaction-Subdiffusion Equations , 2018, SIAM J. Numer. Anal..

[13]  Zhimin Zhang,et al.  Fast evaluation of the Caputo fractional derivative and its applications to fractional diffusion equations , 2015, 1511.03453.

[14]  Jiwei Zhang,et al.  Sharp H1-norm error estimates of two time-stepping schemes for reaction-subdiffusion problems , 2018, J. Comput. Appl. Math..

[15]  D. Benson,et al.  Operator Lévy motion and multiscaling anomalous diffusion. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[16]  Zhi-Zhong Sun,et al.  Finite difference methods for the time fractional diffusion equation on non-uniform meshes , 2014, J. Comput. Phys..

[17]  Yuriy Povstenko,et al.  Signaling problem for time-fractional diffusion-wave equation in a half-space in the case of angular symmetry , 2010 .

[18]  Xianjuan Li,et al.  A Space-Time Spectral Method for the Time Fractional Diffusion Equation , 2009, SIAM J. Numer. Anal..

[19]  Rina Schumer,et al.  Multiscaling fractional advection‐dispersion equations and their solutions , 2003 .

[20]  Qi Wang,et al.  A conservative Fourier pseudo-spectral method for the nonlinear Schrödinger equation , 2017, J. Comput. Phys..

[21]  Yangquan Chen,et al.  Compact difference method for solving the fractional reaction–subdiffusion equation with Neumann boundary value condition , 2015, Int. J. Comput. Math..

[22]  W. McLean Regularity of solutions to a time-fractional diffusion equation , 2010 .

[23]  I. Podlubny Fractional differential equations , 1998 .

[24]  Olof Runborg Finite difference methods for the diffusion equation , 2003 .

[25]  Chuanju Xu,et al.  Error Analysis of a High Order Method for Time-Fractional Diffusion Equations , 2016, SIAM J. Sci. Comput..

[26]  Zhi-Zhong Sun,et al.  A new fractional numerical differentiation formula to approximate the Caputo fractional derivative and its applications , 2014, J. Comput. Phys..

[27]  Zhi‐zhong Sun,et al.  A fully discrete difference scheme for a diffusion-wave system , 2006 .

[28]  R. Hilfer Applications Of Fractional Calculus In Physics , 2000 .

[29]  A. H. Bhrawy A Jacobi spectral collocation method for solving multi-dimensional nonlinear fractional sub-diffusion equations , 2015, Numerical Algorithms.

[30]  Anatoly A. Alikhanov,et al.  A new difference scheme for the time fractional diffusion equation , 2014, J. Comput. Phys..

[31]  B. Henry,et al.  The accuracy and stability of an implicit solution method for the fractional diffusion equation , 2005 .

[32]  Jiwei Zhang,et al.  Unconditional Convergence of a Fast Two-Level Linearized Algorithm for Semilinear Subdiffusion Equations , 2018, Journal of Scientific Computing.

[33]  A. Quarteroni,et al.  Approximation results for orthogonal polynomials in Sobolev spaces , 1982 .

[34]  Hermann Brunner,et al.  Numerical simulations of 2D fractional subdiffusion problems , 2010, J. Comput. Phys..