Universally converging adjustment processes--a unifying approach

Abstract Both in game theory and in general equilibrium theory, there exists a number of universally converging adjustment processes. In game theory, these processes typically serve the role of selecting a Nash equilibrium. Examples are, the tracing procedure of Harsanyi and Selten or the equilibrium selection procedure proposed by McKelvey and Palfrey. In general equilibrium, the processes are adjustment rules by which an auctioneer can clear all markets. Examples are the processes studied by Smale, Kamiya, van der Laan and Talman, and Herings. The underlying reasons for convergence have remained rather mysterious in the literature, and convergence of different processes has seemed unrelated. This paper shows that convergence of all these processes relies on Browder’s fixed point theorem.

[1]  Hugo Sonnenschein,et al.  Market Excess Demand Functions , 1972 .

[2]  D. Saari,et al.  Effective Price Mechanisms , 1978 .

[3]  P. Herings Two simple proofs of the feasibility of the linear tracing procedure , 2000 .

[4]  A. Talman,et al.  The Theory of Markets , 1999 .

[5]  H. Scarf Some Examples of Global Instability of the Competitive Equilibrium , 1960 .

[6]  Antonius Henricus van den Elzen Adjustment Processes for Exchange Economies and Noncooperative Games , 1993 .

[7]  L. Brouwer Über Abbildung von Mannigfaltigkeiten , 1911 .

[8]  K. Kamiya A GLOBALLY STABLE PRICE ADJUSTMENT PROCESS , 1990 .

[9]  G. van der Laan,et al.  An adjustment process for an exchange economy with linear production technologies. , 1989 .

[10]  M. Hirsch,et al.  Differential Equations, Dynamical Systems, and Linear Algebra , 1974 .

[11]  H. Sonnenschein Do Walras' identity and continuity characterize the class of community excess demand functions? , 1973 .

[12]  R. Duncan Luce,et al.  Individual Choice Behavior , 1959 .

[13]  R. Mantel On the characterization of aggregate excess demand , 1974 .

[14]  B. Korte,et al.  Mathematical Programming the State of the Art: Bonn 1982 , 1983 .

[15]  S. Smale Convergent process of price adjust-ment and global newton methods , 1976 .

[16]  J. Harsanyi The tracing procedure: A Bayesian approach to defining a solution forn-person noncooperative games , 1975 .

[17]  Eugene L. Allgower,et al.  Predictor-Corrector and Simplicial Methods for Approximating Fixed Points and Zero Points of Nonlinear Mappings , 1982, ISMP.

[18]  R. Selten Methods, morals, and markets , 1991 .

[19]  Hal R. Varian A remark on boundary restrictions in the global Newton method , 1977 .

[20]  P. Herings,et al.  A globally and universally stable price adjustment process , 1997 .

[21]  R. McKelvey,et al.  Quantal Response Equilibria for Normal Form Games , 1995 .

[22]  William R. Zame,et al.  The Algebraic Geometry of Games and the Tracing Procedure , 1991 .

[23]  G. Debreu,et al.  Excess demand functions , 1974 .

[24]  P. Jean-Jacques Herings,et al.  Equilibrium Adjustment of Disequilibrium Prices. , 1997 .

[25]  Yoshitsugu Yamamoto,et al.  A path-following procedure to find a proper equilibrium of finite games , 1993 .

[26]  K. Judd Computational Economics and Economic Theory: Substitutes or Complements , 1997 .

[27]  R. Kellogg,et al.  Pathways to solutions, fixed points, and equilibria , 1983 .

[28]  Reinhard Selten,et al.  Game equilibrium models , 1991 .

[29]  Donald C. Keenan Further remarks on the Global Newton method , 1981 .

[30]  R. Joosten,et al.  A globally convergent price adjustment process for exchange economies , 1998 .

[31]  B. Eaves,et al.  General equilibrium models and homotopy methods , 1999 .

[32]  P. Jean-Jacques Herings,et al.  Static and dynamic aspects of general disequilibrium theory , 1996 .

[33]  A. V. D. Elzen An adjustment process for the standard Arrow/Debreu model with production , 1997 .

[34]  Donald G. Saari,et al.  Iterative Price Mechanisms , 1985 .

[35]  John C. Harsanyi,et al.  Общая теория выбора равновесия в играх / A General Theory of Equilibrium Selection in Games , 1989 .

[36]  Dolf Talman,et al.  Price-Quantity Adjustment in a Keynesian Economy , 1998 .

[37]  Ronald Peeters,et al.  A differentiable homotopy to compute Nash equilibria of n-person games , 2000 .

[38]  Gerard van der Laan,et al.  An Adjustment Process for an Economy with Linear Production Technologies , 1994, Math. Oper. Res..

[39]  G. Laan,et al.  The transition from a Drèze equilibrium to a Walrasian equilibrium , 1998 .

[40]  A. Talman,et al.  A convergent price adjustment process , 1987 .