Universally converging adjustment processes--a unifying approach
暂无分享,去创建一个
[1] Hugo Sonnenschein,et al. Market Excess Demand Functions , 1972 .
[2] D. Saari,et al. Effective Price Mechanisms , 1978 .
[3] P. Herings. Two simple proofs of the feasibility of the linear tracing procedure , 2000 .
[4] A. Talman,et al. The Theory of Markets , 1999 .
[5] H. Scarf. Some Examples of Global Instability of the Competitive Equilibrium , 1960 .
[6] Antonius Henricus van den Elzen. Adjustment Processes for Exchange Economies and Noncooperative Games , 1993 .
[7] L. Brouwer. Über Abbildung von Mannigfaltigkeiten , 1911 .
[8] K. Kamiya. A GLOBALLY STABLE PRICE ADJUSTMENT PROCESS , 1990 .
[9] G. van der Laan,et al. An adjustment process for an exchange economy with linear production technologies. , 1989 .
[10] M. Hirsch,et al. Differential Equations, Dynamical Systems, and Linear Algebra , 1974 .
[11] H. Sonnenschein. Do Walras' identity and continuity characterize the class of community excess demand functions? , 1973 .
[12] R. Duncan Luce,et al. Individual Choice Behavior , 1959 .
[13] R. Mantel. On the characterization of aggregate excess demand , 1974 .
[14] B. Korte,et al. Mathematical Programming the State of the Art: Bonn 1982 , 1983 .
[15] S. Smale. Convergent process of price adjust-ment and global newton methods , 1976 .
[16] J. Harsanyi. The tracing procedure: A Bayesian approach to defining a solution forn-person noncooperative games , 1975 .
[17] Eugene L. Allgower,et al. Predictor-Corrector and Simplicial Methods for Approximating Fixed Points and Zero Points of Nonlinear Mappings , 1982, ISMP.
[18] R. Selten. Methods, morals, and markets , 1991 .
[19] Hal R. Varian. A remark on boundary restrictions in the global Newton method , 1977 .
[20] P. Herings,et al. A globally and universally stable price adjustment process , 1997 .
[21] R. McKelvey,et al. Quantal Response Equilibria for Normal Form Games , 1995 .
[22] William R. Zame,et al. The Algebraic Geometry of Games and the Tracing Procedure , 1991 .
[23] G. Debreu,et al. Excess demand functions , 1974 .
[24] P. Jean-Jacques Herings,et al. Equilibrium Adjustment of Disequilibrium Prices. , 1997 .
[25] Yoshitsugu Yamamoto,et al. A path-following procedure to find a proper equilibrium of finite games , 1993 .
[26] K. Judd. Computational Economics and Economic Theory: Substitutes or Complements , 1997 .
[27] R. Kellogg,et al. Pathways to solutions, fixed points, and equilibria , 1983 .
[28] Reinhard Selten,et al. Game equilibrium models , 1991 .
[29] Donald C. Keenan. Further remarks on the Global Newton method , 1981 .
[30] R. Joosten,et al. A globally convergent price adjustment process for exchange economies , 1998 .
[31] B. Eaves,et al. General equilibrium models and homotopy methods , 1999 .
[32] P. Jean-Jacques Herings,et al. Static and dynamic aspects of general disequilibrium theory , 1996 .
[33] A. V. D. Elzen. An adjustment process for the standard Arrow/Debreu model with production , 1997 .
[34] Donald G. Saari,et al. Iterative Price Mechanisms , 1985 .
[35] John C. Harsanyi,et al. Общая теория выбора равновесия в играх / A General Theory of Equilibrium Selection in Games , 1989 .
[36] Dolf Talman,et al. Price-Quantity Adjustment in a Keynesian Economy , 1998 .
[37] Ronald Peeters,et al. A differentiable homotopy to compute Nash equilibria of n-person games , 2000 .
[38] Gerard van der Laan,et al. An Adjustment Process for an Economy with Linear Production Technologies , 1994, Math. Oper. Res..
[39] G. Laan,et al. The transition from a Drèze equilibrium to a Walrasian equilibrium , 1998 .
[40] A. Talman,et al. A convergent price adjustment process , 1987 .