Hard-sphere crystallization gets rarer with increasing dimension.

We recently found that crystallization of monodisperse hard spheres from the bulk fluid faces a much higher free-energy barrier in four than in three dimensions at equivalent supersaturation, due to the increased geometrical frustration between the simplex-based fluid order and the crystal [J. A. van Meel, D. Frenkel, and P. Charbonneau, Phys. Rev. E 79, 030201(R) (2009)]. Here, we analyze the microscopic contributions to the fluid-crystal interfacial free energy to understand how the barrier to crystallization changes with dimension. We find the barrier to grow with dimension and we identify the role of polydispersity in preventing crystal formation. The increased fluid stability allows us to study the jamming behavior in four, five, and six dimensions and to compare our observations with two recent theories [C. Song, P. Wang, and H. A. Makse, Nature (London) 453, 629 (2008); G. Parisi and F. Zamponi, Rev. Mod. Phys. (to be published)].

[1]  L. Lue Collision statistics, thermodynamics, and transport coefficients of hard hyperspheres in three, four, and five dimensions. , 2005, The Journal of chemical physics.

[2]  A. Trapananti,et al.  Is there icosahedral ordering in liquid and undercooled metals? , 2003, Physical review letters.

[3]  Michels,et al.  Equation of state of hard D-dimensional hyperspheres. , 1990, Physical review. A, Atomic, molecular, and optical physics.

[4]  P. Turner,et al.  Spherical harmonics and basic coupling coefficients for the group SO(5) in an SO(3) basis , 2004 .

[5]  R. Meyer,et al.  The surface tension in a structural model for the solid-liquid interface , 1976 .

[6]  D Frenkel,et al.  Numerical prediction of absolute crystallization rates in hard-sphere colloids. , 2004, The Journal of chemical physics.

[7]  M. Baus,et al.  The freezing of hard disks and hyperspheres , 1986 .

[8]  Thomas M Truskett,et al.  Is random close packing of spheres well defined? , 2000, Physical review letters.

[9]  Monica L. Skoge,et al.  Packing hyperspheres in high-dimensional Euclidean spaces. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[10]  David R. Nelson,et al.  Theory of Two-Dimensional Melting , 1978 .

[11]  D. Frenkel,et al.  Prediction of absolute crystal-nucleation rate in hard-sphere colloids , 2001, Nature.

[12]  D. Frenkel,et al.  Evidence for an orientationally ordered two dimensional fluid phase from molecular dynamics calculations , 1979 .

[13]  M. Dijkstra,et al.  Wall-fluid and liquid-gas interfaces of model colloid-polymer mixtures by simulation and theory. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[14]  H. Makse,et al.  A phase diagram for jammed matter , 2008, Nature.

[15]  D. Frenkel,et al.  Onset of heterogeneous crystal nucleation in colloidal suspensions , 2004, Nature.

[16]  Analytic Calculation of B4 for Hard Spheres in Even Dimensions , 2003, cond-mat/0303098.

[17]  D Frenkel,et al.  Geometrical frustration: a study of four-dimensional hard spheres. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[18]  R. J. Speedy Pressure and entropy of hard-sphere crystals , 1998 .

[19]  Berend Smit,et al.  Understanding Molecular Simulation , 2001 .

[20]  D. Nelson,et al.  Polytetrahedral Order in Condensed Matter , 1989 .

[21]  An operational scheme to determine the locally preferred structure of model liquids , 2005, cond-mat/0510576.

[22]  H. Löwen,et al.  Freezing transition of hard hyperspheres. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[23]  Alain Pasturel,et al.  Local order of liquid and supercooled zirconium by ab initio molecular dynamics. , 2003, Physical review letters.

[24]  Daan Frenkel,et al.  Suppression of crystal nucleation in polydisperse colloids due to increase of the surface free energy , 2001, Nature.

[25]  J. D. Bernal,et al.  A Geometrical Approach to the Structure Of Liquids , 1959, Nature.

[26]  W. Kauzmann The Nature of the Glassy State and the Behavior of Liquids at Low Temperatures. , 1948 .

[27]  B. Laird,et al.  Wall-induced prefreezing in hard spheres : A thermodynamic perspective , 2007 .

[28]  R. Tolman The Effect of Droplet Size on Surface Tension , 1949 .

[29]  P. Bolhuis,et al.  Monte Carlo study of freezing of polydisperse hard spheres. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[30]  M. Hamermesh Group theory and its application to physical problems , 1962 .

[31]  D. Nelson,et al.  Symmetry, Landau theory and polytope models of glass , 1984 .

[32]  B. Laird,et al.  Crystal-melt interfacial free energy of binary hard spheres from capillary fluctuations , 2008 .

[33]  D. Frenkel,et al.  Solid-liquid interfacial free energy of small colloidal hard-sphere crystals , 2003 .

[34]  D. Frenkel,et al.  Line tension controls wall-induced crystal nucleation in hard-sphere colloids. , 2003, Physical review letters.

[35]  Kenneth W. Desmond,et al.  Random close packing of disks and spheres in confined geometries. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[36]  Jonathan P. K. Doye,et al.  TOPICAL REVIEW: The effect of the range of the potential on the structure and stability of simple liquids: from clusters to bulk, from sodium to ? , 1996 .

[37]  N. N. Medvedev,et al.  Polytetrahedral nature of the dense disordered packings of hard spheres. , 2007, Physical review letters.

[38]  N. J. A. Sloane,et al.  Sphere Packings, Lattices and Groups , 1987, Grundlehren der mathematischen Wissenschaften.

[39]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[40]  P. Whitlock,et al.  The equation of state of hard hyperspheres in four and five dimensions. , 2005, The Journal of chemical physics.

[41]  Raymond D. Mountain,et al.  Monte Carlo studies of the fluid‐solid phase transition in the Lennard‐Jones system , 1974 .

[42]  David R. Nelson,et al.  Bond-orientational order, dislocation loops, and melting of solids and smectic-A liquid crystals , 1981 .

[43]  Thomas C. Hales Sphere packings, I , 1997, Discret. Comput. Geom..

[44]  V. Simonet,et al.  Icosahedral short-range order in deeply undercooled metallic melts. , 2002, Physical review letters.

[45]  J. Kirkwood,et al.  The Statistical Mechanical Theory of Surface Tension , 1949 .

[46]  F. Stillinger,et al.  Exactly solvable disordered sphere-packing model in arbitrary-dimensional Euclidean spaces. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[47]  Pieter Rein ten Wolde,et al.  Numerical calculation of the rate of crystal nucleation in a Lennard‐Jones system at moderate undercooling , 1996 .

[48]  B. Laird,et al.  The anisotropic hard-sphere crystal-melt interfacial free energy from fluctuations. , 2006, The Journal of chemical physics.

[49]  S. Sokołowski,et al.  Fourth virial coefficient for a hard-sphere gas interacting with a hard wall , 1978 .

[50]  A. Trapananti,et al.  Study of local icosahedral ordering in liquid and undercooled liquid copper , 2007 .

[51]  F. Frank Supercooling of liquids , 1952, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[52]  A. Mullin,et al.  Group Theory and its Applications to Physical Problems , 1962 .

[53]  William G. Hoover,et al.  Melting Transition and Communal Entropy for Hard Spheres , 1968 .

[54]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[55]  H L Frisch,et al.  High dimensionality as an organizing device for classical fluids. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[56]  O. Musin The kissing number in four dimensions , 2003, math/0309430.

[57]  V. Talanquer,et al.  Density Functional Analysis of Phenomenological Theories of Gas-Liquid Nucleation , 1995 .

[58]  John S. Rowlinson,et al.  Molecular Theory of Capillarity , 1983 .

[59]  D. Frenkel,et al.  Entropy difference between crystal phases , 1997, Nature.

[60]  David R. Nelson,et al.  Defects and geometry in condensed matter physics , 2002 .

[61]  W. J. Thron,et al.  Encyclopedia of Mathematics and its Applications. , 1982 .

[62]  Andrea J Liu,et al.  Why is random close packing reproducible? , 2007, Physical review letters.

[63]  N. J. A. Sloane,et al.  What are all the best sphere packings in low dimensions? , 1995, Discret. Comput. Geom..

[64]  Ericka Stricklin-Parker,et al.  Ann , 2005 .

[65]  H. Löwen,et al.  Interfacial free energy of hard-sphere fluids and solids near a hard wall. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[66]  T Aste,et al.  Geometrical structure of disordered sphere packings. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[67]  Frits Beukers,et al.  SPECIAL FUNCTIONS (Encyclopedia of Mathematics and its Applications 71) , 2001 .

[68]  T. Aste,et al.  Structural and entropic insights into the nature of the random-close-packing limit. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[69]  K. Tsumuraya,et al.  Icosahedral clustering in a supercooled liquid and glass , 1991 .

[70]  Jean-François Sadoc,et al.  Geometrical Frustration: Frontmatter , 1999 .

[71]  G. Jackson,et al.  Detailed examination of the calculation of the pressure in simulations of systems with discontinuous interactions from the mechanical and thermodynamic perspectives , 2006 .

[72]  G. Tarjus,et al.  Locally preferred structure in simple atomic liquids , 2003 .

[73]  F. Stillinger,et al.  Equilibrium Statistical Mechanics of Inhomogeneous Fluids , 1962 .

[74]  J. Michels,et al.  Dynamical computer simulations on hard hyperspheres in four- and five-dimensional space , 1984 .

[75]  P. Whitlock,et al.  Monte Carlo Simulation of Hard Hyperspheres in Six, Seven and Eight Dimensions for Low to Moderate Densities , 2007 .

[76]  K F Kelton,et al.  First x-ray scattering studies on electrostatically levitated metallic liquids: demonstrated influence of local icosahedral order on the nucleation barrier. , 2003, Physical review letters.

[77]  Curtin Density-functional theory of crystal-melt interfaces. , 1989, Physical review. B, Condensed matter.

[78]  A. Bellemans Statistical mechanics of surface phenomena: I. A cluster expansion for the surface tension , 1962 .

[79]  George E. Andrews,et al.  Special Functions: Partitions , 1999 .

[80]  J. Barker,et al.  What is "liquid"? Understanding the states of matter , 1976 .

[81]  R. Fowler A Tentative Statistical Theory of Macleod's Equation for Surface Tension, and the Parachor , 1937 .

[82]  F. Spaepen A structural model for the solid-liquid interface in monatomic systems , 1975 .

[83]  Daan Frenkel,et al.  New Monte Carlo method to compute the free energy of arbitrary solids. Application to the fcc and hcp phases of hard spheres , 1984 .