Clustering bipartite graphs in terms of approximate formal concepts and sub-contexts

The paper first offers a parallel between two approaches to conceptual clustering, namely formal concept analysis (augmented with the introduction of new operators) and bipartite graph analysis. It is shown that a formal concept (as defined in formal concept analysis) corresponds to the idea of a maximal bi-clique, while sub-contexts, which correspond to independent “conceptual worlds” that can be characterized by means of the new operators introduced, are disconnected sub-graphs in a bipartite graph. The parallel between formal concept analysis and bipartite graph analysis is further exploited by considering “approximation” methods on both sides. It leads to suggest new ideas for providing simplified views of datasets, taking also inspiration from the search for approximate itemsets in data mining (with relaxed requirements), and the detection of communities in hierarchical small worlds.

[1]  M. Newman,et al.  Finding community structure in very large networks. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[2]  Sune Lehmann,et al.  Link communities reveal multiscale complexity in networks , 2009, Nature.

[3]  Duncan J. Watts,et al.  Collective dynamics of ‘small-world’ networks , 1998, Nature.

[4]  Albert,et al.  Emergence of scaling in random networks , 1999, Science.

[5]  Didier Dubois,et al.  Possibility Theory and Formal Concept Analysis in Information Systems , 2009, IFSA/EUSFLAT Conf..

[6]  Das Amrita,et al.  Mining Association Rules between Sets of Items in Large Databases , 2013 .

[7]  Stephen Chadwick,et al.  The Deep South , 2012 .

[8]  Philip S. Yu,et al.  AC-Close: Efficiently Mining Approximate Closed Itemsets by Core Pattern Recovery , 2006, Sixth International Conference on Data Mining (ICDM'06).

[9]  Emmanuel Navarro,et al.  Kodex ou comment organiser les résultats d'une recherche d'information par détection de communautés sur un graphe biparti? , 2011, CORIA.

[10]  Béla Bollobás,et al.  Modern Graph Theory , 2002, Graduate Texts in Mathematics.

[11]  Jean-François Boulicaut,et al.  Agglomerating local patterns hierarchically with ALPHA , 2009, CIKM.

[12]  S. Lehmann,et al.  Biclique communities. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[13]  T. S. Evans,et al.  Clique graphs and overlapping communities , 2010, ArXiv.

[14]  Didier Dubois,et al.  Possibility theory and formal concept analysis: Characterizing independent sub-contexts , 2012, Fuzzy Sets Syst..

[15]  Mark E. J. Newman,et al.  The Structure and Function of Complex Networks , 2003, SIAM Rev..

[16]  T. Vicsek,et al.  Uncovering the overlapping community structure of complex networks in nature and society , 2005, Nature.

[17]  Didier Dubois,et al.  Bridging gaps between several frameworks for the idea of granulation , 2011, 2011 IEEE Symposium on Foundations of Computational Intelligence (FOCI).

[18]  R. Belohlávek Fuzzy Relational Systems: Foundations and Principles , 2002 .

[19]  Matthieu Latapy,et al.  Computing Communities in Large Networks Using Random Walks , 2004, J. Graph Algorithms Appl..

[20]  Henri Prade,et al.  A Parallel between Extended Formal Concept Analysis and Bipartite Graphs Analysis , 2010, IPMU.

[21]  Jean-Loup Guillaume,et al.  Fast unfolding of communities in large networks , 2008, 0803.0476.

[22]  Gerd Stumme,et al.  Formal Concept Analysis: foundations and applications , 2005 .

[23]  Amedeo Napoli,et al.  Analysis of Social Communities with Iceberg and Stability-Based Concept Lattices , 2008, ICFCA.

[24]  Martin Rosvall,et al.  Maps of random walks on complex networks reveal community structure , 2007, Proceedings of the National Academy of Sciences.

[25]  Paul Bourgine,et al.  Epistemic Communities: Description and Hierarchic Categorization , 2004, ArXiv.

[26]  M. Barber Modularity and community detection in bipartite networks. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[27]  Chew Lim Tan,et al.  Preserving Patterns in Bipartite Graph Partitioning , 2006, 2006 18th IEEE International Conference on Tools with Artificial Intelligence (ICTAI'06).

[28]  Roger Guimerà,et al.  Module identification in bipartite and directed networks. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[29]  Inderjit S. Dhillon,et al.  Co-clustering documents and words using bipartite spectral graph partitioning , 2001, KDD '01.

[30]  Mason A. Porter,et al.  Communities in Networks , 2009, ArXiv.

[31]  Santo Fortunato,et al.  Community detection in graphs , 2009, ArXiv.

[32]  Bernhard Ganter,et al.  Formal Concept Analysis, 6th International Conference, ICFCA 2008, Montreal, Canada, February 25-28, 2008, Proceedings , 2008, International Conference on Formal Concept Analysis.

[33]  Cheng Yang,et al.  Efficient discovery of error-tolerant frequent itemsets in high dimensions , 2001, KDD '01.

[34]  F. Klawonn Fuzzy points, fuzzy relations and fuzzy functions , 2000 .

[35]  Makoto Haraguchi,et al.  Finding Top-N Pseudo Formal Concepts with Core Intents , 2009, MLDM.

[36]  B. Gaume,et al.  Balades aléatoires dans les Petits Mondes Lexicaux , 2004 .

[37]  Charu C. Aggarwal,et al.  Graph Clustering , 2010, Encyclopedia of Machine Learning and Data Mining.

[38]  M. Newman,et al.  Finding community structure in networks using the eigenvectors of matrices. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[39]  Vipin Kumar,et al.  Quantitative evaluation of approximate frequent pattern mining algorithms , 2008, KDD.

[40]  R. Lambiotte,et al.  Line graphs, link partitions, and overlapping communities. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[41]  S.,et al.  An Efficient Heuristic Procedure for Partitioning Graphs , 2022 .

[42]  Tsuyoshi Murata,et al.  Modularity for Bipartite Networks , 2010, Data Mining for Social Network Data.

[43]  Nicolas Pasquier,et al.  Efficient Mining of Association Rules Using Closed Itemset Lattices , 1999, Inf. Syst..

[44]  Jean-Charles Delvenne,et al.  Stability of graph communities across time scales , 2008, Proceedings of the National Academy of Sciences.

[45]  Didier Dubois,et al.  Graduality, Uncertainty and Typicality in Formal Concept Analysis , 2010, 35 Years of Fuzzy Set Theory.

[46]  Didier Dubois,et al.  Possibility Theory and Formal Concept Analysis: Context Decomposition and Uncertainty Handling , 2010, IPMU.

[47]  Matthieu Latapy,et al.  Basic notions for the analysis of large two-mode networks , 2008, Soc. Networks.

[48]  Camille Roth,et al.  Reducing the Representation Complexity of Lattice-Based Taxonomies , 2007, ICCS.

[49]  Bernhard Ganter,et al.  Formal Concept Analysis , 2013 .

[50]  Satu Elisa Schaeffer,et al.  Graph Clustering , 2017, Encyclopedia of Machine Learning and Data Mining.

[51]  Daniel T. Larose,et al.  Discovering Knowledge in Data: An Introduction to Data Mining , 2005 .

[52]  Didier Dubois,et al.  A Possibility-Theoretic View of Formal Concept Analysis , 2007, Fundam. Informaticae.

[53]  Radim Bělohlávek,et al.  Fuzzy Relational Systems: Foundations and Principles , 2002 .

[54]  Albert-László Barabási,et al.  Statistical mechanics of complex networks , 2001, ArXiv.

[55]  Andrea Lancichinetti,et al.  Community detection algorithms: a comparative analysis: invited presentation, extended abstract , 2009, VALUETOOLS.

[56]  Camille Roth,et al.  Approaches to the Selection of Relevant Concepts in the Case of Noisy Data , 2010, ICFCA.