Randomized graph products, chromatic numbers, and Lovasz j-function

For a graphG, let α(G) denote the size of the largest independent set inG, and let ϑ(G) denote the Lovasz ϑ-function onG. We prove that for somec>0, there exists an infinite family of graphs such that\(\vartheta (G) > \alpha (G)n/2^{c\sqrt {\log n} }\), wheren denotes the number of vertices in a graph. this disproves a known conjecture regarding the ϑ function.

[1]  W. Hoeffding Probability Inequalities for sums of Bounded Random Variables , 1963 .

[2]  J. Moon,et al.  On cliques in graphs , 1965 .

[3]  László Lovász,et al.  On the ratio of optimal integral and fractional covers , 1975, Discret. Math..

[4]  László Lovász,et al.  On the Shannon capacity of a graph , 1979, IEEE Trans. Inf. Theory.

[5]  Peter Frankl,et al.  Intersection theorems with geometric consequences , 1981, Comb..

[6]  Avi Wigderson,et al.  Improving the performance guarantee for approximate graph coloring , 1983, JACM.

[7]  J. G. Pierce,et al.  Geometric Algorithms and Combinatorial Optimization , 2016 .

[8]  Nathan Linial,et al.  Graph products and chromatic numbers , 1989, 30th Annual Symposium on Foundations of Computer Science.

[9]  Ravi B. Boppana,et al.  Approximating maximum independent sets by excluding subgraphs , 1990, BIT.

[10]  László Lovász,et al.  Approximating clique is almost NP-complete , 1991, [1991] Proceedings 32nd Annual Symposium of Foundations of Computer Science.

[11]  A. Blum ALGORITHMS FOR APPROXIMATE GRAPH COLORING , 1991 .

[12]  Carsten Lund,et al.  Proof verification and hardness of approximation problems , 1992, Proceedings., 33rd Annual Symposium on Foundations of Computer Science.

[13]  Piotr Berman,et al.  On the Complexity of Approximating the Independent Set Problem , 1989, Inf. Comput..

[14]  Carsten Lund,et al.  On the hardness of approximating minimization problems , 1993, STOC.

[15]  Mario Szegedy,et al.  A note on the /spl theta/ number of Lovasz and the generalized Delsarte bound , 1994, Proceedings 35th Annual Symposium on Foundations of Computer Science.

[16]  David P. Williamson,et al.  .879-approximation algorithms for MAX CUT and MAX 2SAT , 1994, STOC '94.

[17]  Avrim Blum,et al.  New approximation algorithms for graph coloring , 1994, JACM.

[18]  Donald E. Knuth The Sandwich Theorem , 1994, Electron. J. Comb..

[19]  Mihir Bellare,et al.  Improved non-approximability results , 1994, STOC '94.

[20]  Martin Fürer,et al.  Improved Hardness Results for Approximating the Chromatic Number , 1995, FOCS.

[21]  David P. Williamson,et al.  Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming , 1995, JACM.

[22]  László Lovász,et al.  Interactive proofs and the hardness of approximating cliques , 1996, JACM.

[23]  Uriel Feige,et al.  Zero knowledge and the chromatic number , 1996, Proceedings of Computational Complexity (Formerly Structure in Complexity Theory).