RX J0152.7−1357: Stellar Populations in an X-Ray Luminous Galaxy Cluster at z = 0.83

We present a study of the stellar populations of galaxies in the cluster RX J0152.7-1357 at a redshift of 0.83. The study is based on new high signal-to-noise ratio spectroscopy of 29 cluster members covering the wavelength range 5000–10000 Å, as well as r′i′z′ photometry of the cluster. We use scaling relations between the central velocity dispersions of the galaxies and their luminosities, Balmer line strengths, and various metal line strengths to parameterize the differences between the members of RX J0152.7-1357 and our low-redshift comparison sample. The luminosities of the RX J0152.7-1357 galaxies and the strengths of the higher order Balmer lines Hγ and Hδ (for non–emission-line galaxies) appear to be in agreement with pure passive evolution of the stellar populations with a formation redshift zform ≈ 4. However, the strengths of the D4000 indices and the metal indices do not support this interpretation. Compared with our low-redshift comparison sample, the metal indices (C4668, Fe4383, CN3883, G4300, and CN2) show that at least half of the non–emission-line galaxies in RX J0152.7-1357 have an α-element abundance ratio of 0.2 dex higher, and about half of the galaxies have significantly lower metal content. X-ray data have previously shown that RX J0152.7-1357 is in the process of merging from two subclumps. We find that differences in stellar populations of the galaxies are associated with the location of the galaxies relative to the X-ray emission. The galaxies with weak C4668 and G4300, as well as galaxies for which weak [O II] emission indicates a very recent star formation episode involving about 1% of the mass, are located in areas of low X-ray luminosity, on the outskirts of the two subclumps. It is possible that these galaxies are experiencing the effect of the cluster merger as (short) episodes of star formation, while the galaxies in the cores of the subclumps are unaffected by the merger. The spectroscopy of the RX J0152.7-1357 galaxies shows for the first time galaxies in a rich cluster at intermediate redshift that cannot evolve passively into the present-day galaxy population in rich clusters. Additional physical processes may be at work, and we speculate that merging with infalling (disk) galaxies in which stars have formed over an extended period might produce the required reduction in . However, the merging could not be accompanied by star formation involving a substantial mass fraction. We note that our conclusions, in part, rely on stellar population models for which the predictions of the indices in the rest-frame blue have not yet been tested extensively.

[1]  P. Dokkum,et al.  Morphological Evolution and the Ages of Early-Type Galaxies in Clusters , 2001, astro-ph/0101468.

[2]  N. Benı́tez,et al.  Weak-Lensing Analysis of the z ≃ 0.8 Cluster CL 0152–1357 with the Advanced Camera for Surveys , 2004, astro-ph/0409304.

[3]  P. Sánchez-Blázquez,et al.  On the Environmental Dependence of the Cluster Galaxy Assembly Timescale , 2004, astro-ph/0405512.

[4]  C. Maraston,et al.  Higher‐order Balmer line indices in α/Fe‐enhanced stellar population models , 2004, astro-ph/0404511.

[5]  I. Hook,et al.  The Gemini–North Multi‐Object Spectrograph: Performance in Imaging, Long‐Slit, and Multi‐Object Spectroscopic Modes , 2004 .

[6]  S. Kannappan,et al.  Tools for Identifying Spurious Luminosity Offsets in Tully-Fisher Studies: Application at Low Redshift and Implications for High Redshift , 2004, astro-ph/0402137.

[7]  L. Kewley,et al.  [O II] as a Star Formation Rate Indicator , 2004, astro-ph/0401172.

[8]  D. Kelson,et al.  The Detailed Fundamental Plane of Two High-Redshift Clusters: MS 2053–04 at z = 0.58 and MS 1054–03 at z = 0.83 , 2003, astro-ph/0312236.

[9]  L. Binette,et al.  ADEMIS: A Library of Evolutionary Models for Emission-Line Galaxies. I. Dust-free Models , 2003, astro-ph/0311233.

[10]  UK.,et al.  The K‐band galaxy luminosity functions of three massive high‐redshift clusters of galaxies , 2003, astro-ph/0310778.

[11]  R. Bender,et al.  The Tully-Fisher relation at intermediate redshift ⋆,⋆⋆ , 2003, astro-ph/0309263.

[12]  G. Bruzual,et al.  Stellar population synthesis at the resolution of 2003 , 2003, astro-ph/0309134.

[13]  N. Vogt,et al.  The DEEP Groth Strip Survey. IX. Evolution of the Fundamental Plane of Field Galaxies , 2003, astro-ph/0307242.

[14]  W. Kapferer,et al.  Internal Kinematics of Spiral Galaxies in Distant Clusters , 2003, 1007.3293.

[15]  C. Maraston,et al.  The impact of α/Fe enhanced stellar evolutionary tracks on the ages of elliptical galaxies , 2003, astro-ph/0302063.

[16]  Institute for Astronomy,et al.  Chandra X-Ray Analysis of the Massive High-Redshift Galaxy Clusters Cl J1113.1–2615 and Cl J0152.7–1357 , 2003, astro-ph/0301218.

[17]  J. Hjorth,et al.  The Tully—Fisher relation of cluster spirals at z = 0.83 , 2002, astro-ph/0211598.

[18]  P. Dokkum,et al.  The Fundamental Plane at z = 1.27: First Calibration of the Mass Scale of Red Galaxies at Redshifts z > 1 , 2002, astro-ph/0210643.

[19]  C. Chiappini,et al.  Oxygen, carbon and nitrogen evolution in galaxies , 2002, astro-ph/0209627.

[20]  Garching,et al.  Stellar population models of Lick indices with variable element abundance ratios , 2002, astro-ph/0209250.

[21]  Mamoru Doi,et al.  Estimating Fixed-Frame Galaxy Magnitudes in the Sloan Digital Sky Survey , 2002, astro-ph/0205243.

[22]  Kazuhiro Shimasaku,et al.  The ugriz Standard-Star System , 2002 .

[23]  D. York,et al.  The u'g'r'i'z' Standard Star Network , 2002, astro-ph/0201143.

[24]  M. Geller,et al.  The LX-σ Relation for Galaxies and Clusters of Galaxies , 2001, astro-ph/0105315.

[25]  I. Smail,et al.  The early-type galaxy population in Abell 2218 , 2001, astro-ph/0103475.

[26]  D. Kelson,et al.  The Evolution of Balmer Absorption-Line Strengths in E/S0 Galaxies from z=0 to z=0.83 , 2001, astro-ph/0103351.

[27]  P. Dokkum,et al.  Morphological Evolution and the Ages of Early-Type Galaxies in Clusters , 2001, astro-ph/0101468.

[28]  J. Silk,et al.  How Young are Early-type Cluster Galaxies? Quantifying the Young Stellar Component in a Rich Cluster at z=0.41 , 2000, astro-ph/0008493.

[29]  N. Caldwell,et al.  Spectral Variations in Early-Type Galaxies as a Function of Mass , 2000, The Astrophysical journal.

[30]  UCOLick,et al.  The Stellar Population Histories of Early-Type Galaxies. II. Controlling Parameters of the Stellar Populations , 2000, astro-ph/0004095.

[31]  J. Silk,et al.  On breaking the age-metallicity degeneracy in early-type galaxies: infall versus star formation efficiency , 2000, astro-ph/0003419.

[32]  H. Kuntschner The Stellar Populations of Early-Type Galaxies in the Fornax Cluster , 2000, astro-ph/0001210.

[33]  S. Tremaine,et al.  Axisymmetric, Three-Integral Models of Galaxies: A Massive Black Hole in NGC 3379 , 1999, astro-ph/9912026.

[34]  L. Girardi,et al.  Evolutionary tracks and isochrones for low- and intermediate-mass stars: From 0.15 to 7 , and from to 0.03 , 1999, astro-ph/9910164.

[35]  R. Nichol,et al.  The Bright SHARC Survey: The X-Ray Cluster Luminosity Function , 1999, astro-ph/9906163.

[36]  M. Malkan,et al.  The WARPS Survey. III. The Discovery of an X-Ray Luminous Galaxy Cluster at z = 0.833 and the Impact of X-Ray Substructure on Cluster Abundance Measurements , 1999, astro-ph/9905321.

[37]  S. Pedraz,et al.  Empirical calibration of the \lambda 4000 \AA break , 1999, astro-ph/9905264.

[38]  I. Jørgensen E and S0 galaxies in the central part of the Coma cluster: ages, metal abundances and dark matter , 1999, astro-ph/9902250.

[39]  R. Saglia,et al.  THE PECULIAR MOTIONS OF EARLY-TYPE GALAXIES IN TWO DISTANT REGIONS - V. THE MG-SIGMA RELATION, AGE AND METALLICITY , 1998, astro-ph/9811089.

[40]  D. Kelson,et al.  Luminosity Evolution of Early-Type Galaxies to z = 0.83: Constraints on Formation Epoch and Ω , 1998, astro-ph/9807242.

[41]  D. Schlegel,et al.  Maps of Dust Infrared Emission for Use in Estimation of Reddening and Cosmic Microwave Background Radiation Foregrounds , 1998 .

[42]  A. Aragón-Salamanca,et al.  Spectral gradients in central cluster galaxies: further evidence of star formation in cooling flows , 1998, astro-ph/9804240.

[43]  D. Schlegel,et al.  Maps of Dust IR Emission for Use in Estimation of Reddening and CMBR Foregrounds , 1997, astro-ph/9710327.

[44]  R. Bender,et al.  Exploring Cluster Elliptical Galaxies as Cosmological Standard Rods , 1997, astro-ph/9708237.

[45]  D. Ottaviani,et al.  Hγ and Hδ Absorption Features in Stars and Stellar Populations , 1997 .

[46]  R. Carlberg,et al.  Star Formation in Cluster Galaxies at 0.2 < z < 0.55 , 1997, astro-ph/9707339.

[47]  Jr.,et al.  Evolution since z = 0.5 of the Morphology-Density Relation for Clusters of Galaxies , 1997, astro-ph/9707232.

[48]  J. Hjorth,et al.  The evolution of cluster E and S0 galaxies measured from the Fundamental Plane , 1997, astro-ph/9905155.

[49]  G. Kauffmann,et al.  Chemical enrichment and the origin of the colour-magnitude relation of elliptical galaxies in a hierarchical merger model , 1997, astro-ph/9704148.

[50]  I. Jørgensen Stellar populations of cluster E and S0 galaxies , 1997, astro-ph/9702076.

[51]  R. Peletier,et al.  A New Chemo-evolutionary Population Synthesis Model for Early-type Galaxies. II. Observations and Results , 1997, astro-ph/9701036.

[52]  E. Bertin,et al.  SExtractor: Software for source extraction , 1996 .

[53]  R. Peletier,et al.  A new chemo-evolutionary population synthesis model for early-type galaxies .1. Theoretical basis , 1996, astro-ph/9605112.

[54]  N. Vogt,et al.  Optical Rotation Curves of Distant Field Galaxies: Keck Results at Redshifts to z ~ 1 , 1996, astro-ph/9604096.

[55]  R. Bell,et al.  Modeling the LICK/IDS Spectral Feature Indices Using Synthetic Spectra , 1995 .

[56]  I. Jørgensen,et al.  The Fundamental Plane for cluster E and S0 galaxies , 1995, astro-ph/9511139.

[57]  I. Jørgensen,et al.  Spectroscopy for E and S0 galaxies in nine clusters , 1995 .

[58]  D. Kelson,et al.  The Evolution of Early-Type Galaxies in Distant Clusters. II. Internal Kinematics of 55 Galaxies in the z=0.33 Cluster Cl 1358+62 , 1995, astro-ph/9908257.

[59]  David Burstein,et al.  Old stellar populations. 5: Absorption feature indices for the complete LICK/IDS sample of stars , 1994 .

[60]  T. Davidge,et al.  Absorption Line Gradients in the Blue and Near-Ultraviolet Spectra of Bright Elliptical Galaxies, and Implications for Studies of Intermediate Redshift Objects , 1994 .

[61]  R. Bender,et al.  Dynamically hot galaxies. II - Global stellar populations , 1993 .

[62]  Roger L. Davies,et al.  Line-Strength Gradients in Elliptical Galaxies , 1993 .

[63]  Sandra M. Faber,et al.  MG and Fe absorption features in elliptical galaxies , 1992 .

[64]  Arlo U. Landolt,et al.  UBVRI Photometric Standard Stars in the Magnitude Range 11 , 1992 .

[65]  Robert C. Kennicutt,et al.  The Integrated spectra of nearby galaxies: General properties and emission line spectra , 1992 .

[66]  T. Beers,et al.  Measures of location and scale for velocities in clusters of galaxies. A robust approach , 1990 .

[67]  J. Mathis,et al.  The relationship between infrared, optical, and ultraviolet extinction , 1989 .

[68]  John P. Huchra,et al.  The kinematics of Abell clusters , 1989 .

[69]  S. Djorgovski,et al.  Fundamental Properties of Elliptical Galaxies , 1987 .

[70]  R. Davies,et al.  Spectroscopy and photometry of elliptical galaxies. I: a new distance estimator , 1987 .

[71]  Mark E. Cornell,et al.  A distance scale from the infrared magnitude/H I velocity-width relations. V - Distance moduli to 10 galaxy clusters, and positive detection of bulk supercluster motion toward the microwave anisotropy , 1986 .

[72]  A. G. Bruzual Spectral evolution of galaxies. 1. Early-type systems , 1983 .

[73]  S. Faber,et al.  Velocity dispersions and mass-to-light ratios for elliptical galaxies. , 1976 .

[74]  R. Buta,et al.  The Hubble Tuning Fork Strikes a New Note , 2004 .

[75]  David L. Block,et al.  Penetrating Bars through Masks of Cosmic Dust , 2004 .

[76]  A. Dressler,et al.  Clusters of Galaxies : Probes of Cosmological Structure and Galaxy Evolution , 2022 .

[77]  S. Blazquez Differences in carbon and nitrogen abundances between field and cluster early-type galaxies , 2003 .

[78]  D. Kelson,et al.  The Evolution of Early-Type Galaxies in Distant Clusters. III. M/LV Ratios in the z=0.33; Cluster Cl 1358+62 , 2000 .

[79]  E. Salpeter The Luminosity function and stellar evolution , 1955 .