Efficient annotation of image data sets for computer vision applications

High quality ground truth data sets are crucial for the development of image recognition systems. However, the task of annotating large image data sets manually takes a lot of time and effort. In order to lower the burden for the development of application-specific image recognition systems, we developed an advanced user interface. This interface is especially designed for non-expert users with little-to-no knowledge of computer vision techniques. The interface presents images clustered by similarity and allows for an efficient and simple annotation of large data sets. The integration of overview+detail concepts allows the precise navigation inside large data sets. The interface can be used without prior instructions on the underlying concepts, like self-organizing maps, image features or visualization techniques.

[1]  Jane Yung-jen Hsu,et al.  KissKissBan: a competitive human computation game for image annotation , 2009, KDD Workshop on Human Computation.

[2]  Laura A. Dabbish,et al.  Labeling images with a computer game , 2004, AAAI Spring Symposium: Knowledge Collection from Volunteer Contributors.

[3]  Benjamin Z. Yao,et al.  Introduction to a Large-Scale General Purpose Ground Truth Database: Methodology, Annotation Tool and Benchmarks , 2007, EMMCVPR.

[4]  Tobias Schreck,et al.  Visual Cluster Analysis of Trajectory Data with Interactive Kohonen Maps , 2008, 2008 IEEE Symposium on Visual Analytics Science and Technology.

[5]  Thomas Schlegel,et al.  Improving the Usability of Hierarchical Representations for Interactively Labeling Large Image Data Sets , 2011, HCI.

[6]  Ebroul Izquierdo,et al.  An interactive framework for image annotation through gaming , 2010, MIR '10.

[7]  P. Törönen,et al.  Analysis of gene expression data using self‐organizing maps , 1999, FEBS letters.

[8]  Sameer A. Nene,et al.  Columbia Object Image Library (COIL100) , 1996 .

[9]  Pierrick Bruneau,et al.  Interactive unsupervised classification and visualization for browsing an image collection , 2010, Pattern Recognit..

[10]  Ben Shneiderman,et al.  Direct annotation: a drag-and-drop strategy for labeling photos , 2000, 2000 IEEE Conference on Information Visualization. An International Conference on Computer Visualization and Graphics.

[11]  Pietro Perona,et al.  Learning Generative Visual Models from Few Training Examples: An Incremental Bayesian Approach Tested on 101 Object Categories , 2004, 2004 Conference on Computer Vision and Pattern Recognition Workshop.

[12]  Daniel A. Keim,et al.  Information Visualization and Visual Data Mining , 2002, IEEE Trans. Vis. Comput. Graph..

[13]  Manuel Blum,et al.  Peekaboom: a game for locating objects in images , 2006, CHI.

[14]  Benjamin B. Bederson,et al.  PhotoMesa: a zoomable image browser using quantum treemaps and bubblemaps , 2001, UIST '01.

[15]  Helge J. Ritter,et al.  Semi-automatic acquisition and labelling of image data using SOMs , 2003, ESANN.

[16]  Jane Yung-jen Hsu,et al.  KissKissBan: a competitive human computation game for image annotation , 2010, HCOMP '09.

[17]  Tobias Schreck,et al.  Visual Cluster Analysis of Trajectory Data with Interactive Kohonen Maps , 2009 .

[18]  Takayuki Itoh,et al.  CAT: A Hierarchical Image Browser Using a Rectangle Packing Technique , 2008, 2008 12th International Conference Information Visualisation.

[19]  Jakub imko,et al.  Games with a Purpose: User Generated Valid Metadata for Personal Archives , 2011 .

[20]  Jorma Laaksonen,et al.  Semantic Annotation of Image Groups with Self-organizing Maps , 2005, CIVR.

[21]  Mary Czerwinski,et al.  PhotoTOC: automatic clustering for browsing personal photographs , 2003, Fourth International Conference on Information, Communications and Signal Processing, 2003 and the Fourth Pacific Rim Conference on Multimedia. Proceedings of the 2003 Joint.

[22]  Juha Vesanto,et al.  SOM-based data visualization methods , 1999, Intell. Data Anal..

[23]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[24]  Jakub Simko,et al.  Games with a Purpose: User Generated Valid Metadata for Personal Archives , 2011, 2011 Sixth International Workshop on Semantic Media Adaptation and Personalization.

[25]  Helge J. Ritter,et al.  Interactive image data labeling using self-organizing maps in an augmented reality scenario , 2005, Neural Networks.

[26]  Esa Alhoniemi,et al.  Self-organizing map in Matlab: the SOM Toolbox , 1999 .

[27]  Erkki Oja,et al.  PicSOM - content-based image retrieval with self-organizing maps , 2000, Pattern Recognit. Lett..

[28]  Teuvo Kohonen,et al.  The self-organizing map , 1990 .

[29]  Antonio Torralba,et al.  LabelMe: A Database and Web-Based Tool for Image Annotation , 2008, International Journal of Computer Vision.