A mutation adaptation mechanism for Differential Evolution algorithm

A new adaptive Differential Evolution algorithm called EWMA-DE is proposed. In original Differential Evolution algorithm three different control parameter values must be pre-specified by the user a priori; Population size, crossover constant and mutation scale factor. Choosing good parameters can be very difficult for the user, especially for the practitioners. In the proposed algorithm the mutation scale factor is adapted using a novel exponential moving average based mechanism, while the other control parameters are kept fixed as in standard Differential Evolution. The algorithm was initially evaluated by using the set of 25 benchmark functions provided by CEC2005 special session on real-parameter optimization and compared with the results of standard DE/rand/1/bin version. Results turned out to be rather promising; EWMA-DE outperformed the original Differential Evolution in majority of tested cases, which is demonstrating the potential of the proposed adaptation approach.

[1]  Ivan Zelinka,et al.  ON STAGNATION OF THE DIFFERENTIAL EVOLUTION ALGORITHM , 2000 .

[2]  Josef Tvrdík Adaptation in differential evolution: A numerical comparison , 2009, Appl. Soft Comput..

[3]  Jason Teo,et al.  Self-adaptive population sizing for a tune-free differential evolution , 2009, Soft Comput..

[4]  Sanyang Liu,et al.  Almost-parameter-free Differential Evolution , 2011, 2011 Seventh International Conference on Natural Computation.

[5]  Saku Kukkonen,et al.  Real-parameter optimization with differential evolution , 2005, 2005 IEEE Congress on Evolutionary Computation.

[6]  Rainer Storn,et al.  Differential Evolution-A simple evolution strategy for fast optimization , 1997 .

[7]  H. Abbass,et al.  PDE: a Pareto-frontier differential evolution approach for multi-objective optimization problems , 2001, Proceedings of the 2001 Congress on Evolutionary Computation (IEEE Cat. No.01TH8546).

[8]  Elena Marchiori,et al.  Evolutionary Algorithms with On-the-Fly Population Size Adjustment , 2004, PPSN.

[9]  Mehmet Fatih Tasgetiren,et al.  Differential evolution algorithm with ensemble of parameters and mutation strategies , 2011, Appl. Soft Comput..

[10]  Jason Teo,et al.  Differential Evolution with Self-adaptive Populations , 2005, KES.

[11]  R. Storn,et al.  Differential Evolution - A simple and efficient adaptive scheme for global optimization over continuous spaces , 2004 .

[12]  J. Tvrdík Self-adaptive Variants of Differential Evolution with Exponential Crossover , 2009 .

[13]  H. Abbass The self-adaptive Pareto differential evolution algorithm , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).

[14]  Qingfu Zhang,et al.  Differential Evolution With Composite Trial Vector Generation Strategies and Control Parameters , 2011, IEEE Transactions on Evolutionary Computation.

[15]  A. Kai Qin,et al.  Self-adaptive differential evolution algorithm for numerical optimization , 2005, 2005 IEEE Congress on Evolutionary Computation.

[16]  Zbigniew Michalewicz,et al.  Parameter Control in Evolutionary Algorithms , 2007, Parameter Setting in Evolutionary Algorithms.

[17]  Arthur C. Sanderson,et al.  JADE: Self-adaptive differential evolution with fast and reliable convergence performance , 2007, 2007 IEEE Congress on Evolutionary Computation.

[18]  Rainer Storn,et al.  Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces , 1997, J. Glob. Optim..

[19]  Ville Tirronen,et al.  Scale factor local search in differential evolution , 2009, Memetic Comput..

[20]  Janez Brest,et al.  High-dimensional real-parameter optimization using Self-Adaptive Differential Evolution algorithm with population size reduction , 2008, 2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence).

[21]  Jouni Lampinen,et al.  Population Size Adaptation for Differential Evolution Algorithm Using Fuzzy Logic , 2003 .

[22]  Arthur C. Sanderson,et al.  JADE: Adaptive Differential Evolution With Optional External Archive , 2009, IEEE Transactions on Evolutionary Computation.

[23]  Josef Tvrd Adaptive population-based search: application to estimation of nonlinear regression parameters , 2006 .

[24]  Josef Tvrdík,et al.  Competitive Differential Evolution Algorithm in Comparison with Other Adaptive Variants , 2012, SOCO.

[25]  Jing J. Liang,et al.  Problem Definitions and Evaluation Criteria for the CEC 2005 Special Session on Real-Parameter Optimization , 2005 .

[26]  J. Dennis,et al.  Mixed Variable Optimization of the Number and Composition of Heat Intercepts in a Thermal Insulation System , 2001 .

[27]  Janez Brest,et al.  Self-Adapting Control Parameters in Differential Evolution: A Comparative Study on Numerical Benchmark Problems , 2006, IEEE Transactions on Evolutionary Computation.

[28]  Carlos Artemio Coello-Coello,et al.  Theoretical and numerical constraint-handling techniques used with evolutionary algorithms: a survey of the state of the art , 2002 .

[29]  Jouni Lampinen,et al.  A Fuzzy Adaptive Differential Evolution Algorithm , 2005, Soft Comput..

[30]  André L. V. Coelho,et al.  Dynamically tuning the population size in particle swarm optimization , 2008, SAC '08.

[31]  Petr Bujok,et al.  Adaptive Variants of Differential Evolution: Towards Control-Parameter-Free Optimizers , 2013, Handbook of Optimization.

[32]  Josef Tvrdík,et al.  Differential evolution with competitive setting of control parameters , 2007 .

[33]  P. N. Suganthan,et al.  Differential Evolution Algorithm With Strategy Adaptation for Global Numerical Optimization , 2009, IEEE Transactions on Evolutionary Computation.

[34]  Ponnuthurai N. Suganthan,et al.  Empirical study on the effect of population size on Differential evolution Algorithm , 2008, 2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence).

[35]  SK Mishra,et al.  Global Optimization by Differential Evolution and Particle Swarm Methods: Evaluation on Some Benchmark Functions , 2006 .