Boundary Element Methods for Maxwell Transmission Problems in Lipschitz Domains

Summary.We consider the Maxwell equations in a domain with Lipschitz boundary and the boundary integral operator A occuring in the Calderón projector. We prove an inf-sup condition for A using a Hodge decomposition. We apply this to two types of boundary value problems: the exterior scattering problem by a perfectly conducting body, and the dielectric problem with two different materials in the interior and exterior domain. In both cases we obtain an equivalent boundary equation which has a unique solution. We then consider Galerkin discretizations with Raviart-Thomas spaces. We show that these spaces have discrete Hodge decompositions which are in some sense close to the continuous Hodge decomposition. This property allows us to prove quasioptimal convergence of the resulting boundary element methods.

[1]  Peter Takáč,et al.  The Maz’ya Anniversary Collection , 1999 .

[2]  J. Nédélec Acoustic and electromagnetic equations , 2001 .

[3]  J. Planchard,et al.  Une méthode variationnelle d’éléments finis pour la résolution numérique d’un problème extérieur dans $\mathbf {R}^3$ , 1973 .

[4]  A. Buffa Trace Theorems on Non-Smooth Boundaries for Functional Spaces Related to Maxwell Equations: an Overview , 2003 .

[5]  Patrick Ciarlet,et al.  On traces for functional spaces related to Maxwell's equations Part II: Hodge decompositions on the boundary of Lipschitz polyhedra and applications , 2001 .

[6]  F. Thomasset Finite element methods for Navier-Stokes equations , 1980 .

[7]  Jun Zou,et al.  Fully discrete finite element approaches for time-dependent Maxwell's equations , 1999, Numerische Mathematik.

[8]  A. Bendali,et al.  Numerical analysis of the exterior boundary value problem for the time-harmonic Maxwell equations by a boundary finite element method. I - The continuous problem. II - The discrete problem , 1984 .

[9]  Patrick Ciarlet,et al.  On traces for functional spaces related to Maxwell's equations Part I: An integration by parts formula in Lipschitz polyhedra , 2001 .

[10]  Martin Costabel,et al.  Boundary Integral Operators on Lipschitz Domains: Elementary Results , 1988 .

[11]  Martin Costabel,et al.  A direct boundary integral equation method for transmission problems , 1985 .

[12]  M. Costabel A coercive bilinear form for Maxwell's equations , 1991 .

[13]  Claus Müller,et al.  Foundations of the mathematical theory of electromagnetic waves , 1969 .

[14]  François Dubois,et al.  Discrete vector potential representation of a divergence-free vector field in three dimensional domains: numerical analysis of a model problem , 1990 .

[15]  Ralf Hiptmair,et al.  Natural Boundary Element Methods for the Electric Field Integral Equation on Polyhedra , 2002, SIAM J. Numer. Anal..

[16]  Ralf Hiptmair,et al.  Symmetric Coupling for Eddy Current Problems , 2002, SIAM J. Numer. Anal..

[17]  C. Schwab,et al.  Boundary element methods for Maxwell's equations on non-smooth domains , 2002, Numerische Mathematik.

[18]  Annalisa Buffa,et al.  Hodge decompositions on the boundary of nonsmooth domains: the multi-connected case , 2001 .

[19]  Martin Costabel,et al.  Strongly elliptic boundary integral equations for electromagnetic transmission problems , 1988, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[20]  M. Costabel A remark on the regularity of solutions of Maxwell's equations on Lipschitz domains , 1990 .

[21]  Michel Fortin,et al.  Mixed and Hybrid Finite Element Methods , 2011, Springer Series in Computational Mathematics.

[22]  M. Cessenat MATHEMATICAL METHODS IN ELECTROMAGNETISM: LINEAR THEORY AND APPLICATIONS , 1996 .

[23]  Snorre H. Christiansen,et al.  The electric field integral equation on Lipschitz screens: definitions and numerical approximation , 2003, Numerische Mathematik.

[24]  T. Petersdorff,et al.  Boundary integral equations for mixed Dirichlet, Neumann and transmission problems , 1989 .

[25]  Dongwoo Sheen,et al.  On traces for ${\bf H}({\bf curl},\Omega)$ in Lipschitz domains , 2000 .

[26]  Vivette Girault,et al.  Finite Element Methods for Navier-Stokes Equations - Theory and Algorithms , 1986, Springer Series in Computational Mathematics.

[27]  Snorre H. Christiansen,et al.  Discrete Fredholm properties and convergence estimates for the electric field integral equation , 2004, Math. Comput..

[28]  Wendland W.L. Costabel M.,et al.  Strong ellipticity of boundary integral operators. , 1986 .

[29]  Habib Ammari,et al.  Coupling of finite and boundary element methods for the time-harmonic Maxwell equations. Part II: a symmetric formulation , 1999 .

[30]  V. Girault,et al.  Vector potentials in three-dimensional non-smooth domains , 1998 .