Four generations of sodium guide star lasers for adaptive optics in astronomy and space situational awareness

This paper recalls the history of sodium guide star laser systems used in astronomy and space situational awareness adaptive optics, analyzing the impact that sodium laser technology evolution has had on routine telescope operations. While it would not be practical to describe every single sodium guide star laser system developed to date, it is possible to characterize their evolution in broad technology terms. The first generation of sodium lasers used dye laser technology to create the first sodium laser guide stars in Hawaii, California, and Spain in the late 1980s and 1990s. These experimental systems were turned into the first laser guide star facilities to equip mediumto- large diameter adaptive optics telescopes, opening a new era of Laser Guide Star Adaptive Optics (LGS AO)-enabled diffraction-limited imaging from the ground. Although they produced exciting scientific results, these laser guide star facilities were large, power-hungry and messy. In the USA, a second-generation of sodium lasers was developed in the 2000s that used cleaner, yet still large and complex, solid-state laser technology. These are the systems in routine operation at the 8 to 10m-class astronomical telescopes and 4m-class satellite imaging facilities today. Meanwhile in Europe, a third generation of sodium lasers was being developed using inherently compact and efficient fiber laser technology, and resulting in the only commercially available sodium guide star laser system to date. Fiber-based sodium lasers are being or will soon be deployed at three astronomical telescopes and two space surveillance stations. These highly promising systems are still relatively large to install on telescopes and they remain significantly expensive to procure and maintain. We are thus proposing to develop a fourth generation of sodium lasers: based on semiconductor technology, these lasers could provide a definitive solution to the problem of sodium LGS AO laser sources for all astronomy and space situational awareness applications.

[1]  D. Bonaccini Calia,et al.  Comparison between observation and simulation of sodium LGS return flux with a 20W CW laser on Tenerife , 2016, Astronomical Telescopes + Instrumentation.

[2]  Peter L. Wizinowich,et al.  Astronomical Science with Adaptive Optics at the W. M. Keck Observatory , 2013 .

[3]  Edward J. Kibblewhite,et al.  Calculation of returns from sodium beacons for different types of laser , 2008, Astronomical Telescopes + Instrumentation.

[4]  D. Gavel,et al.  Desing of a Laser Guide Star System for the Keck II Telescope , 1997 .

[5]  T. Jeys,et al.  Development Of Mesospheric Sodium Laser Beacon For Atmospheric Adaptive Optics , 1990, LEOS '90. Conference Proceedings IEEE Lasers and Electro-Optics Society 1990 Annual Meeting.

[6]  Robert Q. Fugate,et al.  Realization of a 50-watt facility-class sodium guidestar pump laser , 2005, SPIE LASE.

[7]  Ronald Holzlöhner,et al.  Statistics of the sodium layer parameters at low geographic latitude and its impact on adaptive-optics sodium laser guide star characteristics , 2010 .

[8]  James M. Spinhirne,et al.  Two generations of laser-guide-star adaptive-optics experiments at the Starfire Optical Range , 1994 .

[9]  Philippe Dierickx,et al.  VLT laser guide star facility , 2003, SPIE Astronomical Telescopes + Instrumentation.

[10]  Brian J. Bauman,et al.  MCAO for Gemini South , 2003, SPIE Astronomical Telescopes + Instrumentation.

[11]  Sebastian Rabien,et al.  Design of PARSEC the VLT laser , 2003, SPIE Astronomical Telescopes + Instrumentation.

[12]  Horace W. Babcock,et al.  THE POSSIBILITY OF COMPENSATING ASTRONOMICAL SEEING , 1953 .

[13]  Donald T. Gavel,et al.  Image improvement from a sodium-layer laser guide star adaptive optics system , 1997 .

[14]  D. Burns,et al.  Actively stabilized single-frequency vertical-external-cavity AlGaAs laser , 1999, IEEE Photonics Technology Letters.

[15]  Fang Shi,et al.  Design and field tests of an 8-W sum-frequency laser for adaptive optics , 1998, Astronomical Telescopes and Instrumentation.

[16]  A. Drobshoff,et al.  Compact fiber laser for 589 nm laser guide star generation , 2005, CLEO/Europe. 2005 Conference on Lasers and Electro-Optics Europe, 2005..

[17]  Matthew Cheselka,et al.  Implementation of the Chicago sum frequency laser at Palomar laser guide star test bed , 2004, SPIE Astronomical Telescopes + Instrumentation.

[18]  Dominik Bauer,et al.  Power-scaling of optically pumped semiconductor lasers , 2007, SPIE LASE.

[19]  M. Kuznetsov,et al.  VECSEL Semiconductor Lasers: A Path to High‐Power, Quality Beam and UV to IR Wavelength by Design , 2010 .

[20]  James R. Morris,et al.  Efficient excitation of a mesospheric sodium laser guide star by intermediate-duration pulses , 1994 .

[21]  D. Bonaccini Calia,et al.  First light of the ESO laser guide star facility , 2006, SPIE Astronomical Telescopes + Instrumentation.

[22]  Chester S. Gardner,et al.  Experiments on laser guide stars at Mauna Kea Observatory for adaptive imaging in astronomy , 1987, Nature.

[23]  Robert Q. Fugate,et al.  Theory of continuous-wave excitation of the sodium beacon , 1999 .

[24]  Jorg Hader,et al.  106 W continuous-wave output power from vertical-external-cavity surface-emitting laser , 2012 .

[25]  James Roger P. Angel,et al.  Field evaluation of two new continuous-wave dye laser systems optimized for sodium beacon excitation , 1994, Astronomical Telescopes and Instrumentation.

[26]  Brent L. Ellerbroek,et al.  LGS AO photon return simulations and laser requirements for the Gemini LGS AO program , 2000, Astronomical Telescopes and Instrumentation.

[27]  Sebastian Rabien,et al.  ALFA laser guide star: present status and future developments , 2000, Astronomical Telescopes and Instrumentation.

[28]  Francois Rigaut,et al.  Adaptive optics for space debris tracking , 2014, Astronomical Telescopes and Instrumentation.

[29]  R. Holzlohner,et al.  Optimization of cw sodium laser guide star efficiency , 2009, 0908.1527.

[30]  Robert Q. Fugate,et al.  Analysis of measured photon returns from sodium beacons , 1998 .

[31]  Sam Ragland,et al.  Keck II laser guide star AO system and performance with the TOPTICA/MPBC laser , 2016, Astronomical Telescopes + Instrumentation.

[32]  Gerald T Moore,et al.  20 W of continuous-wave sodium D2 resonance radiation from sum-frequency generation with injection-locked lasers. , 2003, Optics letters.

[33]  Andrew Serio,et al.  Gemini South multi-conjugate adaptive optics (GeMS) laser guide star facility on-sky performance results , 2012, Other Conferences.

[34]  D. Budker,et al.  Modeling of pulsed-laser guide stars for the Thirty Meter Telescope project , 2012, 1203.5900.

[35]  Donald Gavel,et al.  ShaneAO: wide science spectrum adaptive optics system for the Lick Observatory , 2014, Astronomical Telescopes and Instrumentation.

[36]  Emmi Kantola,et al.  High-efficiency 20 W yellow VECSEL. , 2014, Optics express.

[37]  Herbert W. Friedman,et al.  Sodium beacon laser system for the Lick Observatory , 1995, Optics & Photonics.

[38]  Erling Riis,et al.  Narrow linewidth operation of a tunable optically pumped semiconductor laser. , 2004, Optics express.

[39]  Ronald Holzlöhner,et al.  Dependence of sodium laser guide star photon return on the geomagnetic field , 2009 .

[40]  Tomi Leinonen,et al.  Narrow linewidth 1118/559 nm VECSEL based on strain compensated GaInAs/GaAs quantum-wells for laser cooling of Mg-ions , 2012 .

[41]  Stephan W Koch,et al.  Multichip vertical-external-cavity surface-emitting lasers: a coherent power scaling scheme. , 2006, Optics letters.

[42]  Celine d'Orgeville,et al.  High-Power Solid-State Sodium Beacon Laser Guidestar for the Gemini North Observatory , 2005 .

[43]  Ronald Holzlöhner,et al.  Laser guide star return flux simulations based on observed sodium density profiles , 2010, Astronomical Telescopes + Instrumentation.

[44]  Claire E. Max,et al.  Sodium-layer laser-guide-star experimental results , 1994 .

[45]  Ronald Holzlöhner,et al.  Physical optics modeling and optimization of laser guide star propagation , 2008, Astronomical Telescopes + Instrumentation.

[46]  Xiong Hu,et al.  Seasonal and nocturnal variations of the mesospheric sodium layer at starfire optical range, New Mexico , 2003 .

[47]  Robert Q. Fugate,et al.  The Sodium LGS Brightness Model over the SOR , 2007 .

[48]  J. D. Berger,et al.  Towards a practical sodium guide star laser source: design for < 50 watt LGS based on OPSL , 2012, Other Conferences.

[49]  Sean M. Adkins,et al.  20 W and 50 W guidestar laser system update for the Keck I and Gemini South telescopes , 2008, Astronomical Telescopes + Instrumentation.

[50]  Brian J. Bauman,et al.  Gemini north and south laser guide star systems requirements and preliminary designs , 2002, SPIE Optics + Photonics.

[51]  I. Sagnes,et al.  Multiwatt-power highly-coherent compact single-frequency tunable vertical-external-cavity-surface-emitting-semiconductor-laser. , 2010, Optics express.

[52]  Paul D. Hillman,et al.  Comparison of pump-laser characteristics for producing a mesospheric sodium guidestar for adaptive optical systems on large-aperture telescopes , 1998, Photonics West.

[53]  Donald Gavel,et al.  Investigations of long pulse sodium laser guide stars , 2012, Other Conferences.

[54]  Antoine Labeyrie,et al.  Feasibility of adaptive telescope with laser probe , 1985 .

[55]  Yudong Zhang,et al.  Photon returns test of the pulsed sodium guide star laser on the 1.8 meter telescope , 2012, Other Conferences.

[56]  M. Tavast,et al.  Optically Pumped Semiconductor Lasers for Precision Spectroscopic Applications , 2013, IEEE Journal of Quantum Electronics.

[57]  Francois Rigaut,et al.  A sodium laser guide star facility for the ANU/EOS space debris tracking adaptive optics demonstrator , 2014, Astronomical Telescopes and Instrumentation.

[58]  Arnaud Garnache,et al.  Diode-pumped broadband vertical-external-cavity surface-emitting semiconductor laser applied to high-sensitivity intracavity absorption spectroscopy , 2000 .