Development of a temperature distribution simulator for lung RFA based on air dependence of thermal and electrical properties

Radio frequency ablation (RFA) for lung cancer has increasingly been used over the past few years, because it is a minimally invasive treatment. As a feature of RFA for lung cancer, lung contains air. Air is low thermal and electrical conductivity. Therefore, RFA for this cancer has the advantage that only the cancer is coagulated, because the heated area is confined to the immediate vicinity of the heating point. However, it is difficult for operators to control the precise formation of coagulation zones due to inadequate imaging modalities. We propose a method using finite element method to analyze the temperature distribution of the organ in order to overcome the current deficiencies. Creating an accurate thermal physical model was a challenging problem because of the complexities of the thermal properties of the organ. In this study, we developed a temperature distribution simulator for lung RFA using thermal and electrical properties that were based on the lung's internal air dependence. In addition, we validated the constructed simulator in an in vitro study, and the lung's internal heat transfer during RFA was validated quantitatively.

[1]  Masakatsu G. Fujie,et al.  Modeling the internal pressure dependence of thermal conductivity and in vitro temperature measurement for lung RFA , 2011, 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society.

[2]  Masakatsu G. Fujie,et al.  Estimation of intraoperative blood flow during liver RF ablation using a finite element method-based biomechanical simulation , 2011, 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society.

[3]  Takao Hiraki,et al.  Does tumor type affect local control by radiofrequency ablation in the lungs? , 2010, European journal of radiology.

[4]  R. McTaggart,et al.  Thermal ablation of lung tumors. , 2007, Techniques in vascular and interventional radiology.

[5]  Ghulam Abbas,et al.  Radiofrequency ablation for the treatment of stage I non-small cell lung neoplasm. , 2008, Seminars in thoracic and cardiovascular surgery.

[6]  S. Goldberg,et al.  Radiofrequency tumor ablation: principles and techniques. , 2001, European journal of ultrasound : official journal of the European Federation of Societies for Ultrasound in Medicine and Biology.