Riemann–Roch and Abel–Jacobi theory on a finite graph

Abstract It is well known that a finite graph can be viewed, in many respects, as a discrete analogue of a Riemann surface. In this paper, we pursue this analogy further in the context of linear equivalence of divisors. In particular, we formulate and prove a graph-theoretic analogue of the classical Riemann–Roch theorem. We also prove several results, analogous to classical facts about Riemann surfaces, concerning the Abel–Jacobi map from a graph to its Jacobian. As an application of our results, we characterize the existence or non-existence of a winning strategy for a certain chip-firing game played on the vertices of a graph.

[1]  Dino Lorenzini Arithmetical properties of laplacians of graphs , 1999 .

[2]  On Néron models, divisors and modular curves , 1998, math/9806173.

[3]  Roland Bacher,et al.  The lattice of integral flows and the lattice of integral cuts on a finite graph , 1997 .

[4]  Domaine de Voluceau,et al.  Two Lectures on Max-plus Algebra , 1998 .

[5]  Barry Mazur,et al.  Modular curves and the eisenstein ideal , 1977 .

[6]  Dino J. Lorenzini Arithmetical graphs , 1989 .

[7]  T. Willmore Algebraic Geometry , 1973, Nature.

[8]  Alexander Postnikov,et al.  Trees, parking functions, syzygies, and deformations of monomial ideals , 2003 .

[9]  Rick Miranda,et al.  Algebraic Curves and Riemann Surfaces , 1995 .

[10]  Introduction to Abelian Varieties , 1993 .

[11]  Criel Merino López Chip firing and the tutte polynomial , 1997 .

[12]  P. Hacking,et al.  Riemann Surfaces , 2007 .

[13]  Michel Raynaud,et al.  Spécialisation du foncteur de Picard , 1970 .

[14]  Norman Biggs The Tutte Polynomial as a Growth Function , 1999 .

[15]  T. Sunada,et al.  Zeta Functions of Finite Graphs , 2000 .

[16]  Norman Biggs,et al.  Chip-Firing and the Critical Group of a Graph , 1999 .

[17]  A. Terras,et al.  Zeta Functions of Finite Graphs and Coverings , 1996 .

[18]  Hajime Urakawa,et al.  A discrete analogue of the harmonic morphism and green kernel comparison theorems , 2000, Glasgow Mathematical Journal.

[19]  Shou-Wu Zhang,et al.  Admissible pairing on a curve , 1993 .

[20]  Dino J. Lorenzini A finite group attached to the Laplacian of a graph , 1991, Discret. Math..

[21]  Joe W. Harris,et al.  Principles of Algebraic Geometry: Griffiths/Principles , 1994 .

[22]  Criel Merino,et al.  The chip-firing game , 2005, Discret. Math..

[23]  Audry Terras What are zeta functions of graphs and what are they good for ? , 2005 .

[24]  N. Biggs Algebraic Potential Theory on Graphs , 1997 .

[25]  Nellie Clarke Brown Trees , 1896, Savage Dreams.

[26]  Gábor Tardos,et al.  Polynomial Bound for a Chip Firing Game on Graphs , 1988, SIAM J. Discret. Math..

[27]  Kenneth A. Ribet,et al.  On modular representations of $$(\bar Q/Q)$$ arising from modular forms , 1990 .

[28]  Jan van den Heuvel,et al.  Algorithmic Aspects of a Chip-Firing Game , 2001, Combinatorics, Probability and Computing.

[29]  Denis Chebikin,et al.  A family of bijections between G-parking functions and spanning trees , 2003, J. Comb. Theory A.

[30]  Motoko Kotani,et al.  Jacobian Tori Associated with a Finite Graph and Its Abelian Covering Graphs , 2000, Adv. Appl. Math..

[31]  László Lovász,et al.  Chip-Firing Games on Directed Graphs , 1992 .

[32]  Metrized graphs, electrical networks, and Fourier analysis , 2004, math/0407428.

[33]  Gordon F. Royle,et al.  Algebraic Graph Theory , 2001, Graduate texts in mathematics.

[34]  P. Griffiths,et al.  Geometry of algebraic curves , 1985 .

[35]  A. Terras,et al.  Zeta functions of finite graphs and coverings, III , 1996 .

[36]  Grigory Mikhalkin Tropical geometry and its applications , 2006 .

[37]  Joe W. Harris,et al.  Principles of Algebraic Geometry , 1978 .

[38]  J. Brasselet Introduction to toric varieties , 2004 .

[39]  David Mumford,et al.  Curves and their Jacobians , 1975 .

[40]  László Lovász,et al.  Chip-firing Games on Graphs , 1991, Eur. J. Comb..